【題目】已知:如圖,在△ABC中,BD、CE分別是邊AC、AB上的高,點(diǎn)MBC的中點(diǎn),且MN⊥DE,垂足為點(diǎn)N

⑴求證:ME=MD;

⑵若BC=20cm,ED=12cm,求MN的長

⑶如果BD平分∠ABC,求證:AC=4EN.

【答案】(1)證明見解析;(2)MN=8;(3)證明見解析.

【解析】

(1)根據(jù)直角三角形的性質(zhì)得到DM=BC,EM=BC,等量代換即可證明;

(2)由ME=MDMNDE可得MN平分ED,由勾股定理即可求得MN的長;

(3)證明ABD≌△CBD,根據(jù)全等三角形的性質(zhì)得到AD=CD,根據(jù)直角三角形的性質(zhì),等腰三角形的性質(zhì)證明.

(1)BD是邊AC上的高,

∴∠BDC=90°,

∵點(diǎn)MBC的中點(diǎn),

DM=BC,

同理,EM=BC,

ME=MD;

(2)由(1)知EM=BC=10cm,

ME=MD,MNDE,

EN=ED=6cm,

由勾股定理得MN==8cm;

(3)BD平分∠ABC,

∴∠ABD=CBD,.

BD是邊AC上的高,

∴∠ADB=CDB=90°.

ABDCBD中,

∴△ABD≌△CBD(ASA),

AD=CD,

CE是邊AB上的高,

∴∠CEA=90°,

AC=2ED,

ME=MD,MNDE,

DE=2EN,

AC=4EN.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD 相交于點(diǎn)O,∠AOD=3BOD+20°.

(1)求∠BOD的度數(shù);

(2)O為端點(diǎn)引射線OE,OF ,射線OE平分∠BOD,且∠EOF= 90°,求∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖.ABC中,∠C=2B,DBC上一點(diǎn),且ADAB,點(diǎn)EBD的中點(diǎn),連結(jié)AE.

(1)求證:BD=2AC;

(2)若AE=6.5,AD=5,那么ABE的周長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,BE平分∠ABD,DE平分∠BDC,且BE與DE相交于點(diǎn)E,求證∠E=90° 證明:∵AB∥CD(
∴∠ABD+∠BDC=180°(
∵BE平分∠ABD(
∴∠EBD=
又∵DE平分∠BDC
∴∠BDE=
∴∠EBD+∠EDB= ∠ABD+ ∠BDC(
= (∠ABD+∠BDC)=90°
∴∠E=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小李從西安通過某快遞公司給在南昌的外婆寄一盒櫻桃,快遞時(shí),他了解到這個(gè)公司除收取每次6元的包裝費(fèi)外,櫻桃不超過1kg收費(fèi)22元,超過1kg,則超出部分按每千克10元加收費(fèi)用.設(shè)該公司從西安到南昌快遞櫻桃的費(fèi)用為y(元),所寄櫻桃為x(kg).

(1)求yx之間的函數(shù)關(guān)系式;

(2)已知小李給外婆快寄了2.5kg櫻桃,請(qǐng)你求出這次快寄的費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=mx2﹣(2m﹣5)x+m﹣2的圖象與x軸有兩個(gè)公共點(diǎn).
(1)求m的取值范圍,并寫出當(dāng)m取范圍內(nèi)最大整數(shù)時(shí)函數(shù)的解析式;
(2)題(1)中求得的函數(shù)記為C1 ,
①當(dāng)n≤x≤﹣1時(shí),y的取值范圍是1≤y≤﹣3n,求n的值;
②函數(shù)C2:y=m(x﹣h)2+k的圖象由函數(shù)C1的圖象平移得到,其頂點(diǎn)P落在以原點(diǎn)為圓心,半徑為 的圓內(nèi)或圓上,設(shè)函數(shù)C1的圖象頂點(diǎn)為M,求點(diǎn)P與點(diǎn)M距離最大時(shí)函數(shù)C2的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BDAC D,EFAC FAMD=AGF1=2=35°

1)求∠GFC的度數(shù)

2)求證:DMBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某公路檢測(cè)中心在一事故多發(fā)地段安裝了一個(gè)測(cè)速儀器,檢測(cè)點(diǎn)設(shè)在距離公路10m的A處,測(cè)得一輛汽車從B處行駛到C處所用時(shí)間為0.9秒,已知∠B=30°,∠C=45°.
(1)求B,C之間的距離;(保留根號(hào))
(2)如果此地限速為80km/h,那么這輛汽車是否超速?請(qǐng)說明理由.(參考數(shù)據(jù): ≈1.7, ≈1.4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水果店張阿姨以每斤4元的價(jià)格購進(jìn)某種水果若干斤,然后以每斤6元的價(jià)格出售,每天可售出150斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出30斤,為保證每天至少售出360斤,張阿姨決定降價(jià)銷售.
(1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利450元,張阿姨需將每斤的售價(jià)降低多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案