精英家教網 > 初中數學 > 題目詳情
近幾年,被稱為“園林城市,生態(tài)家園”的宿遷旅游業(yè)得到長足的發(fā)展,到宿遷觀光旅游的客人越來越多,“真如禪寺”景點每天都吸引大量的游客前來觀光.事實表明,如果游客過多,不利于保護珍貴文物,為了實施可持續(xù)發(fā)展,兼顧社會效益和經濟效益,該景點擬采取浮動門票價格的方法來控制游客人數.已知每張門票原價為40元,現設浮動門票為每張x元,且40≤x≤70,經市場調研發(fā)現一天游覽人數y與票價x之間存在著如圖所示的一次函數關系.
(1)根據圖象,求y與x之間的函數關系式;
(2)設該景點一天的門票收入為W元.
①試用x代數式表示W;
②試問:當門票定為多少時,該景點一天的門票收入最高?最高門票收入是多少?
(1)設y與x之間的函數關系式為y=kx+b,
根據題意,得
50k+b=3500
60k+b=3000
,
解得
k=-50
b=6000

所以y與x之間的函數關系式為y=-50x+6000;

(2)W=(-50x+6000)x=-50x2+6000x,
當x=-
6000
2×(-50)
=60時,W最大,
此時最大值為60×3000=180000(元).
答:該景點門票定為60元時,一天的門票收入最高,最高門票收入是18萬元.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:填空題

(1)將拋物線y1=2x2向右平移2個單位,得到拋物線y2的圖象,則y2=______;
(2)如圖,P是拋物線y2對稱軸上的一個動點,直線x=t平行于y軸,分別與直線y=x、拋物線y2交于點A、B.若△ABP是以點A或點B為直角頂點的等腰直角三角形,求滿足條件的t的值,則t=______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

拋物線y=ax2+bx+c,與x軸交于點A(-3,0),對稱軸為x=-1,頂點C到x軸的距離為2,求此拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知二次函數y=-
1
2
x2
+bx+c的圖象經過A(2,0)、B(0,-6)兩點.
(1)求這個二次函數的解析式;
(2)設該二次函數的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

現有鋁合金窗框料8米,準備用它做一個如圖所示的長方形窗架,一般來說,當窗戶總面積最大時,窗戶的透光最好.那么,要使這個窗戶透光最好,窗架的寬應為多少米此時窗戶的總面積是多少平方米?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內,西紅柿的市場售價與上市時間的關系用圖一的一條折線表示;西紅柿的種植成本與上市時間的關系用圖二的拋物線段表示.

(1)寫出圖一表示的市場售價與時間的函數關系式P;寫出圖二表示的種植成本與時間的函數關系式Q;
(2)認定市場售價減去種植成本為純收益,問何時上市的西紅柿純收益最大?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

有一座拋物線型拱橋,其水面寬AB為18米,拱頂O離水面AB的距離OM為8米,貨船在水面上的部分的橫斷面是矩形CDEF,如圖建立平面直角坐標系.
(1)求此拋物線的解析式;
(2)如果限定矩形的長CD為9米,那么矩形的高DE不能超過多少米,才能使船通過拱橋;
(3)若設EF=a,請將矩形CDEF的面積S用含a的代數式表示,并指出a的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知拋物線y=-
2
3
x2+
4
3
x+2的圖象與x軸交于A,B兩點,與y軸交于點C,拋物線的對稱軸與x軸交于點D.點M從O點出發(fā),以每秒1個單位長度的速度向B運動,過M作x軸的垂線,交拋物線于點P,交BC于Q.
(1)求點B和點C的坐標;
(2)設當點M運動了x(秒)時,四邊形OBPC的面積為S,求S與x的函數關系式,并指出自變量x的取值范圍;
(3)在線段BC上是否存在點Q,使得△DBQ成為以BQ為一腰的等腰三角形?若存在,求出點Q的坐標,若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖矩形OABC,AB=2OA=2n,分別以OA和OC為x、y軸建立平面直角坐標系,連接OB,沿OB折疊,使點A落在P處.過P作PQ⊥y軸于Q.
(1)求OD:OA的值;
(2)以B為頂點的拋物線:y=ax2+bx+c,經過點D,與直線OB相交于E,過E作EF⊥y軸于F,試判斷2•PQ•EF與矩形OABC面積的關系,并說明理由.

查看答案和解析>>

同步練習冊答案