【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:
①4a+b=0;
②9a+c<3b;
③25a+5b+c=0;
④當(dāng)x>2時(shí),y隨x的增大而減。
其中正確的結(jié)論有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】D
【解析】解:∵拋物線的對(duì)稱軸為直線x=﹣ =2,
∴b=﹣4a,即4a+b=0,(故①正確);
∵當(dāng)x=﹣3時(shí),y<0,
∴9a﹣3b+c<0,
即9a+c<3b,(故②正確);
∵拋物線與x軸的一個(gè)交點(diǎn)為(﹣1,0),對(duì)稱軸為直線x=2,
∴拋物線與x軸的一個(gè)交點(diǎn)為(5,0),
∴25a+5b+c=0,(故③正確),
∵拋物線開口向下,對(duì)稱軸為直線x=2,
∴x>2時(shí),y隨x的增大而減小,(故④正確).
故選D.
【考點(diǎn)精析】利用二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系對(duì)題目進(jìn)行判斷即可得到答案,需要熟知二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果兩個(gè)圓只有一個(gè)公共點(diǎn),那么我們稱這兩個(gè)圓相切,這個(gè)公共點(diǎn)就叫做切點(diǎn),當(dāng)兩圓相切時(shí),如果其中一個(gè)圓(除切點(diǎn)外)在另一個(gè)圓的內(nèi)部,叫做這兩個(gè)圓內(nèi)切;其中一個(gè)圓(除切點(diǎn)外)在另一個(gè)圓的外部,叫做這兩個(gè)圓外切.如圖所示:兩圓的半徑分別為R,r(R>r),兩圓的圓心之間的距離為d,若兩個(gè)圓外切則d=R+r,若兩個(gè)圓內(nèi)切則d=R﹣r,已知兩圓的半徑分別為方程x2+mx+3=0的兩個(gè)根,當(dāng)兩圓相切時(shí),已知這兩個(gè)圓的圓心之間的距離為4,則m的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市計(jì)劃在“十周年”慶典當(dāng)天開展購物抽獎(jiǎng)活動(dòng),凡當(dāng)天在該超市購物的顧客,均有一次抽獎(jiǎng)的機(jī)會(huì),抽獎(jiǎng)規(guī)則如下:將如圖所示的圓形轉(zhuǎn)盤平均分成四個(gè)扇形,分別標(biāo)上1,2,3,4四個(gè)數(shù)字,抽獎(jiǎng)?wù)哌B續(xù)轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,當(dāng)每次轉(zhuǎn)盤停止后指針?biāo)干刃蝺?nèi)的數(shù)為每次所得的數(shù)(若指針指在分界線時(shí)重轉(zhuǎn));當(dāng)兩次所得數(shù)字之和為8時(shí),返現(xiàn)金20元;當(dāng)兩次所得數(shù)字之和為7時(shí),返現(xiàn)金15元;當(dāng)兩次所得數(shù)字之和為6時(shí)返現(xiàn)金10元.
(1)試用樹狀圖或列表的方法表示出一次抽獎(jiǎng)所有可能出現(xiàn)的結(jié)果;
(2)某顧客參加一次抽獎(jiǎng),能獲得返還現(xiàn)金的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】雜技團(tuán)進(jìn)行雜技表演,演員從蹺蹺板右端A處(OA=1米)彈跳到人梯頂端椅子B處,借助其彈性可以將演員彈跳到離地面最高處點(diǎn)P( , )
(1)若將其身體(看成一個(gè)點(diǎn))的路線為拋物線的一部分,求拋物線的解析式.
(2)在一次表演中,已知人梯高BC=3.4米,演員彈跳到最高處點(diǎn)P后落到人梯頂端椅子B處算表演成功,為了這次表演成功,人梯離起跳點(diǎn)A的水平距離OC是多少米?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按要求完成下列題目.
(1)求: +++…+的值.
對(duì)于這個(gè)問題,可能有的同學(xué)接觸過,一般方法是考慮其中的一般項(xiàng),注意到上面和式的每一項(xiàng)可以寫成的形式,而=﹣,這樣就把一項(xiàng)(分)裂成了兩項(xiàng).
試著把上面和式的每一項(xiàng)都裂成兩項(xiàng),注意觀察其中的規(guī)律,求出上面的和,并直接寫出+++…+的值.
(2)若=+
①求:A、B的值:
②求: ++…+的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABC中,BA=BC,∠ABC=90°,點(diǎn)D在AC上,將△ABD繞點(diǎn)B沿順時(shí)針方向旋轉(zhuǎn)90°后,得到△CBE.
(1)求∠DCE的度數(shù);
(2)若AB=4,CD=3AD,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,圓心O在AB上,M是OA上一點(diǎn),過M作AB的垂線交BC的延長線于點(diǎn)E,過點(diǎn)C作⊙O的切線,交ME于點(diǎn)F.
(1)求證:EF=CF;
(2)若∠B=2∠A,AB=4,且AC=CE,求BM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為D,E,AD與BE相交于點(diǎn)F.
(1)求證:△ACD∽△BFD;
(2)當(dāng)tan∠ABD=1,AC=3時(shí),求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE都是等腰直角三角形,CE與BD相交于點(diǎn)M,BD交AC于點(diǎn)N,
證明:(1)BD=CE. (2)BD⊥CE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com