【題目】某農場要建一個長方形的養(yǎng)雞場,雞場的一邊靠長為18m的墻,另三邊用木欄圍城,木欄長為32m

1)雞場的面積能圍成120m2嗎?

2)雞場的面積能圍成130m2嗎?

【答案】1)雞場的面積能圍成120m2,(2)圍成的雞場面積不能達到130㎡.

【解析】

設與墻垂直的一邊長為xm,則與墻平行的一邊長為(322xm,根據(jù)面積列出一元二次方程進行求解;

2)同理根據(jù)面積列出方程,再進行根的判別式,得到無解,故面積不能達到130.

解:(1)設與墻垂直的一邊長為xm,則與墻平行的一邊長為(322xm,

依題意,得x322x)=120,

解得x16,x210
x6時,322x2018;

x10時,322x12
所以x6不合題意,舍去.

雞場的面積能圍成120m2,
設計方案: 垂直于墻的邊長為10m,平行于墻的邊長為12m;

2)設與墻垂直的一邊長為xm,依題意,得
x322x)=130,整理得x216x+650,
∵a1,b=-16,c65,

∴b24ac=(-1624×1×65=-40
原方程無解.
所以,圍成的雞場面積不能達到130㎡.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在每個小正方形的邊長為1的網格中,點均在格點上,是一條小河平行的兩岸.

()的距離等于_____;

()現(xiàn)要在小河上修一座垂直于兩岸的橋(上,點上,橋的寬度忽略),使最短,請在如圖所示的網格中,用無刻度的直尺,畫出,并簡要說明點的位置是如何找到的(不要求證明)_________________________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2x+4x軸交于A,B兩點(AB的左側),與y軸交于點C

1)求點A,點B的坐標;

2P為第二象限拋物線上的一個動點,求ACP面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于的一元二次方程,下列判斷不正確的是(

A.若方程有兩個實數(shù)根,則方程也有兩個實數(shù)根;

B.如果是方程的一個根,那么的一個根;

C.如果方程有一個根相等,那么這個根是1;

D.如果方程有一個根相等,那么這個根是1-1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以AB為直徑的OCE相切于點CCEAB的延長線于點E,直徑AB18,∠A30°,弦CDAB,垂足為點F,連接ACOC,則下列結論正確的是______.(寫出所有正確結論的序號)

;

扇形OBC的面積為π;

③△OCF∽△OEC;

若點P為線段OA上一動點,則APOP有最大值20.25

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一堂數(shù)學實踐課上,趙老師給出了下列問題:

提出問題

1)如圖1,在△ABC中,EBC的中點,PAE的中點,就稱CP是△ABC的“雙中線”,∠ACB900,AC3AB5.則CP=___;

探究規(guī)律

2)在圖2中,E是正方形ABCD一邊上的中點,PBE上的中點,則稱AP是正方形ABCD的“雙中線”,若AB4.則AP的長為_____;

3)在圖3中,AP是矩形ABCD的“雙中線”, 若AB4,BC6,請仿照(2)中的方法求出AP的長,并說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長為4米.

(1)求新傳送帶AC的長度.

(2)如果需要在貨物著地點C的左側留出2米的通道,試判斷距離B點5米的貨物MNQP是否需要挪走,并說明理由.

參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB切⊙O于點B,BCOA,交⊙O于點C,若∠OAB=30°,BC=6,則劣弧BC的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=90°,AB=2cm,AC=4cm.動點P從點A出發(fā),沿AB方向以1cm/s的速度向點B運動,動點Q從點B同時出發(fā),沿BA方向以1cm/s的速度向點A運動.當點P到達點B時,P,Q兩點同時停止運動,以AP為一邊向上作正方形APDE,過點QQF∥BC,交AC于點F.設點P的運動時間為ts,正方形和梯形重合部分的面積為Scm2

1)當t= _________ s時,點P與點Q重合;

2)當t= _________ s時,點DQF上;

3)當點PQ,B兩點之間(不包括Q,B兩點)時,求St之間的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案