△OAB的坐標分別為O(0,0),A(0,4),B(3,0),以原點為位似中心,在第一象限將△OAB擴大,使變換得到的△OEF與△OAB對應邊的比為2:1,
(1)畫出△OEF;
(2)求四邊形ABFE的面積.

解:(1)作出相應的圖形,如圖所示;
(2)由題意得:OA=4,OB=3,OE=8,OF=6,△OAB與△EOF都為直角三角形,
則S四邊形ABFE=S△OEF-S△OAB
=OF•OE-OB•OA
=×6×8-×3×4
=24-6
=18.
分析:(1)根據(jù)題意作出相應的圖形,如圖所示;
(2)由圖形求出OA,OB,OE,OF的長,四邊形ABFE的面積=三角形EOF面積-三角形AOB面積,求出即可.
點評:此題考查了作圖-位似變換,畫位似圖形的一般步驟為:①確定位似中心,②分別連接并延長位似中心和能代表原圖的關鍵點;③根據(jù)相似比,確定能代表所作的位似圖形的關鍵點;順次連接上述各點,得到放大或縮小的圖形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•從化市一模)△OAB的坐標分別為O(0,0),A(0,4),B(3,0),以原點為位似中心,在第一象限將△OAB擴大,使變換得到的△OEF與△OAB對應邊的比為2:1,
(1)畫出△OEF;
(2)求四邊形ABFE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年廣東省從化市中考一模數(shù)學試卷(帶解析) 題型:解答題

△OAB的坐標分別為O(0, 0),A(0,4),B(3,0),以原點為位似中心,在第一象限將△OAB擴大,使變換得到的△OEF與△OAB對應邊的比為2:1 ,

(1)畫出△OEF;
(2)求四邊形ABFE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年廣東省從化市中考一模數(shù)學試卷(解析版) 題型:解答題

△OAB的坐標分別為O(0, 0),A(0,4),B(3,0),以原點為位似中心,在第一象限將△OAB擴大,使變換得到的△OEF與△OAB對應邊的比為2:1 ,

(1)畫出△OEF;

(2)求四邊形ABFE的面積.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2013年廣東省廣州市從化市中考數(shù)學一模試卷(解析版) 題型:解答題

△OAB的坐標分別為O(0,0),A(0,4),B(3,0),以原點為位似中心,在第一象限將△OAB擴大,使變換得到的△OEF與△OAB對應邊的比為2:1,
(1)畫出△OEF;
(2)求四邊形ABFE的面積.

查看答案和解析>>

同步練習冊答案