【題目】《九章算術(shù)》是中國古代的數(shù)學(xué)專著,是“算經(jīng)十書”(漢唐之間出現(xiàn)的十部古算書)中最重要的一種.書中有下列問題:“今有邑方不知大小,各中開門,出北門八十步有木,出西門二百四十五步見木,問邑方有幾何?”意思是:如圖,點、點分別是正方形的邊、的中點,,,過點,步,步,則正方形的邊長為( )
A.步B.步C.步D.步
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高科技產(chǎn)品開發(fā)公司現(xiàn)有員工50名,所有員工的月工資情況如下表:
員工 | 管理人員 | 普通工作人員 | |||||
人員結(jié)構(gòu) | 總經(jīng)理 | 部門經(jīng)理 | 科研人員 | 銷售人員 | 高級技工 | 中級技工 | 勤雜工 |
員工數(shù)(名) | 1 | 3 | 2 | 3 | 24 | 1 | |
每人月工資(元) | 21000 | 8400 | 2025 | 2200 | 1800 | 1600 | 950 |
請你根據(jù)上述內(nèi)容,解答下列問題:
(1)該公司“高級技工”有 名;
(2)所有員工月工資的平均數(shù)x為2500元,中位數(shù)為 元,眾數(shù)為 元;
(3)小張到這家公司應(yīng)聘普通工作人員.請你回答右圖中小張的問題,并指出用(2)中的哪個數(shù)據(jù)向小張介紹員工的月工資實際水平更合理些;
(4)去掉四個管理人員的工資后,請你計算出其他員工的月平均工資(結(jié)果保留整數(shù)),并判斷能否反映該公司員工的月工資實際水平.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中是真命題的是( )
A.中位數(shù)就是一組數(shù)據(jù)中最中間的一個數(shù)
B.這組數(shù)據(jù)0,2,3,3,4,6的方差是2.1
C.一組數(shù)據(jù)的標(biāo)準(zhǔn)差越大,這組數(shù)據(jù)就越穩(wěn)定
D.如果的平均數(shù)是,那么
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在①②③這三對數(shù)值中,__________是方程x+2y+z=3的解,__________是方程2x-y-z=1的解,__________是方程3x-y-z=2的解,因此__________是方程組的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一節(jié)數(shù)學(xué)實踐活動課上,老師拿出三個邊長都為5cm 的正方形硬紙板,他向同學(xué)們提出了這樣一個問題:若將三個正方形紙板不重疊地放在桌面上,用一個圓形硬紙板將其蓋住,這樣的圓形硬紙板的最小直徑應(yīng)有多大?問題提出后,同學(xué)們經(jīng)過討論,大家覺得本題實際上就是求將三個正方形硬紙板無重疊地適當(dāng)放置,圓形硬紙板能蓋住時的最小直徑.老師將同學(xué)們討論過程中探索出的三種不同擺放類型的圖形畫在黑板上,如圖所示:
(1)通過計算(結(jié)果保留根號與π).
(Ⅰ)圖①能蓋住三個正方形所需的圓形硬紙板最小直徑應(yīng)為
(Ⅱ)圖②能蓋住三個正方形所需的圓形硬紙板最小直徑為
(Ⅲ)圖③能蓋住三個正方形所需的圓形硬紙板最小直徑為
(2)其實上面三種放置方法所需的圓形硬紙板的直徑都不是最小的,請你畫出用圓形硬紙板蓋住三個正方形時直徑最小的放置方法,(只要畫出示意圖,不要求說明理由),并求出此時圓形硬紙板的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,它是一個8×10的網(wǎng)格,每個小正方形的邊長均為1,每個小正方形的頂點叫格點,△ABC的頂點均在格點上.
(1)畫出△ABC關(guān)于直線OM對稱的△A1B1C1.
(2)畫出△ABC關(guān)于點O的中心對稱圖形△A2B2C2.
(3)△A1B1C1與△A2B2C2組成的圖形是軸對稱圖形嗎?如果是,請畫出對稱軸.△A1B1C1與△A2B2C2組成的圖形 (填“是”或“不是”)軸對稱圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,AB∥CD,求∠A+∠AEC+∠C的度數(shù).
解:過點E作EF∥AB.
∵EF∥AB(已作)
∴∠A+∠AEF=180°(______)
又∵AB∥CD(已知)
∴EF∥CD(______)
∴∠CEF+∠______=180°(兩直線平行,同旁內(nèi)角互補)
∴∠A+∠AEF+∠CEF+∠C=360°(等式性質(zhì))
即∠A+∠AEC+∠C=______.
(2)根據(jù)上述解題及作輔助線的方法,在圖2中,AB∥EF,則∠B+∠C+∠D+∠E=______.
(3)根據(jù)(1)和(2)的規(guī)律,圖3中AB∥GF,猜想:∠B+∠C+∠D+∠E+∠F=______.
(4)如圖4,AB∥CD,在B,D兩點的同一側(cè)有M1,M2,M3,…Mn共n個折點,則∠B+∠M1+∠M2+…+∠Mn+∠D的度數(shù)為______(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+2ax+c的圖象與x軸交于A、B兩點(點A在點B的左邊)AB=4,與y軸交于點C,OC=OA,點D為拋物線的頂點.
(1)求拋物線的解析式;
(2)點M(m,0)為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N,可得矩形PQNM,如圖1,點P在點Q左邊,當(dāng)矩形PQNM的周長最大時,求m的值,并求出此時的△AEM的面積;
(3)已知H(0,﹣1),點G在拋物線上,連HG,直線HG⊥CF,垂足為F,若BF=BC,求點G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了了解學(xué)生每天完成家庭作業(yè)所用時間的情況,從每班抽取相同數(shù)量的學(xué)生進(jìn)行調(diào)查,并將所得數(shù)據(jù)進(jìn)行整理,制成條形統(tǒng)計圖和扇形統(tǒng)計圖,如圖所示:
(1)補全條形統(tǒng)計圖;
(2)求扇形統(tǒng)計圖中扇形D的圓心角的度數(shù);
(3)若該中學(xué)有2000名學(xué)生,請估計其中有多少名學(xué)生能在1.5 h內(nèi)完成家庭作業(yè).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com