如圖1,已知OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn)(不與O、A重合),BP的延長線交⊙O于Q,過Q點(diǎn)作⊙O的切線交OA的延長線于R.說明:RP=RQ.
 
運(yùn)動探求.
(1)如圖2,若OA向上平移,變化一中的結(jié)論還成立嗎?(只需交待判斷) 答:_________.
(2)如圖3,如果P在OA的延長線上時,BP交⊙O于Q,過點(diǎn)Q作⊙O的切線交OA的延長線于R,原題中的結(jié)論還成立嗎?為什么?

試題分析:(1)連接OQ∴OQ=OB∴∠B=∠OQB
可證∠PQR=-∠OQB
∠RPQ=∠BPO=-∠B
∴∠RPQ=∠PQR∴RP=PQ (4分)
(2)成立 (6分)
(3)連接OQ,結(jié)論成立 (7分)
因?yàn)閳D形的延長并沒有對角度之間的轉(zhuǎn)換造成影響,依據(jù)三角形全等的知識仍然可以判定
原結(jié)論
點(diǎn)評:解答本題的關(guān)鍵是熟練掌握判定兩個三角形全等的一般方法:SSS、SAS、ASA、AAS、HL,注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,將一塊含45°角的直角三角尺ABC在水平桌面上繞點(diǎn)B按順時針方向旋轉(zhuǎn)到A1BC1的位置,若AB=8cm,那么點(diǎn)A旋轉(zhuǎn)到A1所經(jīng)過的路線長為_______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

圓錐的底面直徑為6cm,母線長為5cm,則圓錐的側(cè)面積是      cm2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,A、B、C是⊙O上的三點(diǎn),∠CAO=25°,∠BCO=35°,則∠AOB=     度。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD的邊AB在X軸上,A與O重合,CD∥AB,D(0,),直線AE與CD交于E,DE=6。以BE為折痕,把點(diǎn)A翻恰好與點(diǎn)C重合;動點(diǎn)P從點(diǎn)D出發(fā)沿著D→C→B→O路徑勻速運(yùn)動,速度為每秒4個單位;以P為圓心的⊙P半徑每秒增加個單位,當(dāng)點(diǎn)P在點(diǎn)D處時,⊙P半徑為;直線AE沿y軸正方向向上平移,速度為每秒個單位;直線AE、⊙P同時出發(fā),當(dāng)點(diǎn)P到終點(diǎn)O時兩者都停止,運(yùn)動時間為t;

(1) 求點(diǎn)B的坐標(biāo);
(2)求當(dāng)直線AE與⊙P相切時t的值;
(3) 在整個運(yùn)動過程中直線AE與⊙P相交的時間共有幾秒?(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若兩圓的半徑分別是3和4,圓心距為8,則兩圓的位置關(guān)系為         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,以A(5,1)為圓心,以2個單位長度為半徑的⊙Ax軸于點(diǎn)B、C.解答下列問題:

(1)將⊙A向左平移_________個單位長度與y軸首次相切,得到⊙A1.此時點(diǎn)A1的坐標(biāo)為________,陰影部分的面積S_________;
(2)求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點(diǎn)E(0,3),O(0,0),C(4,0)在⊙A上,BE是⊙A上的一條弦.則sin∠OBE=      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

半徑為6,圓心角為60°的扇形的面積是    .(結(jié)果保留π)

查看答案和解析>>

同步練習(xí)冊答案