【題目】清朝康熙皇帝是我國(guó)歷史上對(duì)數(shù)學(xué)很有興趣的帝王近日,西安發(fā)現(xiàn)了他的數(shù)學(xué)專著,其中有一文《積求勾股法》,它對(duì)“三邊長(zhǎng)為3、4、5的整數(shù)倍的直角三角形,已知面積求邊長(zhǎng)”這一問(wèn)題提出了解法:“若所設(shè)者為積數(shù)(面積),以積率六除之,平方開(kāi)之得數(shù),再以勾股弦各率乘之,即得勾股弦之?dāng)?shù)”.用現(xiàn)在的數(shù)學(xué)語(yǔ)言表述是:“若直角三角形的三邊長(zhǎng)分別為3、4、5的整數(shù)倍,設(shè)其面積為S,則第一步: =m;第二步: =k;第三步:分別用3、4、5乘以k,得三邊長(zhǎng)”.
(1)當(dāng)面積S等于150時(shí),請(qǐng)用康熙的“積求勾股法”求出這個(gè)直角三角形的三邊長(zhǎng);
(2)你能證明“積求勾股法”的正確性嗎?請(qǐng)寫(xiě)出證明過(guò)程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC=,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,得到△ADE,連接BE,則BE的長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一道題目是一個(gè)多項(xiàng)式加上多項(xiàng)式xy﹣3yz﹣2xz,某同學(xué)以為是減去這個(gè)多項(xiàng)式,因此計(jì)算得到的結(jié)果為2xy﹣3yz+4xz.請(qǐng)你改正他的錯(cuò)誤,求出正確的答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于點(diǎn)D,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以每秒1厘米的速度在線段AD上向終點(diǎn)D運(yùn)動(dòng).設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)時(shí)間為t秒.
(1)求AD的長(zhǎng);
(2)當(dāng)△PDC的面積為15平方厘米時(shí),求t的值;
(3)動(dòng)點(diǎn)M從點(diǎn)C出發(fā)以每秒2厘米的速度在射線CB上運(yùn)動(dòng).點(diǎn)M與點(diǎn)P同時(shí)出發(fā),且當(dāng)點(diǎn)P運(yùn)動(dòng)到終點(diǎn)D時(shí),點(diǎn)M也停止運(yùn)動(dòng).是否存在t,使得?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)據(jù)-3,-2,0,6,6,13,20,35則它的中位數(shù)和眾數(shù)各是( )
A. 6和6 B. 3和6 C. 6和3 D. 9.5和6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)?萍夹〗M研制了一套信號(hào)發(fā)射、接收系統(tǒng).在對(duì)系統(tǒng)進(jìn)行測(cè)試中,如圖,小明從路口A處出發(fā),沿東南方向筆直公路行進(jìn),并發(fā)射信號(hào),小華同時(shí)從A處出發(fā),沿西南方向筆直公路行進(jìn),并接收信號(hào).若小明步行速度為39米/分,小華步行速度為52米/分,恰好在出發(fā)后30分時(shí)信號(hào)開(kāi)始不清晰.
(1)你能求出他們研制的信號(hào)收發(fā)系統(tǒng)的信號(hào)傳送半徑嗎?(以信號(hào)清晰為界限)
(2)通過(guò)計(jì)算,你能找到題中數(shù)據(jù)與勾股數(shù)3、4、5的聯(lián)系嗎?試從中尋找求解決問(wèn)題的簡(jiǎn)便算法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)如圖1,在△ABC中,∠ACB為銳角,點(diǎn)D為射線BC上一點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.(提示:正方形的四條邊都相等,四個(gè)角都是直角)
(1)如果AB=AC,∠BAC=90°,
①當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖2,線段CF、BD所在直線的位置關(guān)系為_(kāi)_____,線段CF、BD的數(shù)量關(guān)系為_(kāi)_____;
②當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖3,①中的結(jié)論是否仍然成立,并說(shuō)明理由;
(2)如果AB≠AC,∠BAC是銳角,點(diǎn)D在線段BC上,當(dāng)∠ACB滿足 條件時(shí),CF⊥BC(點(diǎn)C、F不重合),并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx-5(a≠0)經(jīng)過(guò)點(diǎn)A(4,-5),與x軸的負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=5OB,拋物線的頂點(diǎn)為點(diǎn)D.
(1)求這條拋物線的表達(dá)式;
(2)連接AB、BC、CD、DA,求四邊形ABCD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com