如圖,小俊在A處利用高為1.8米的測角儀AB測得樓EF頂部E的仰角為30°,然后前進(jìn)12米到達(dá)C處,又測得樓頂E的仰角為60°,求樓EF的高度.(結(jié)果精確到0.1米)(參考數(shù)據(jù): =1.414, =1.732)


【考點(diǎn)】解直角三角形的應(yīng)用-仰角俯角問題.

【分析】設(shè)樓EF的高為x米,根據(jù)正切的概念用x表示出DG、BG,根據(jù)題意列出方程,解方程即可.

【解答】解:設(shè)樓EF的高為x米,則EG=EF﹣GF=(x﹣1.8)米,

由題意得:EF⊥AF,DC⊥AF,BA⊥AF,BD⊥EF,

在Rt△EGD中,DG==(x﹣1.8),

在Rt△EGB中,BG=(x﹣1.8),

∴CA=DB=BG﹣DG=(x﹣1.8),

∵CA=12米,

(x﹣1.8)=12,

解得:x=6+1.8≈12.2,

答:樓EF的高度約為12.2米.

【點(diǎn)評】本題考查的是解直角三角形的應(yīng)用﹣仰角俯角問題,正確理解仰角和俯角的概念、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


計算:﹣24+|1﹣4sin60°|+(2016π﹣0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


圖1是小明在健身器材上進(jìn)行仰臥起坐鍛煉時情景.圖2是小明鍛煉時上半身由EM位置運(yùn)動到與地面垂直的EN位置時的示意圖.已知BC=0.64米,AD=0.24米,α=18°.(sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)

(1)求AB的長(精確到0.01米);

(2)若測得EN=0.8米,試計算小明頭頂由M點(diǎn)運(yùn)動到N點(diǎn)的路徑弧MN的長度(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知:如圖,在直角坐標(biāo)系中,有菱形OABC,A點(diǎn)的坐標(biāo)為(10,0),對角線OB、AC相交于D點(diǎn),雙曲線y=(x>0)經(jīng)過D點(diǎn),交BC的延長線于E點(diǎn),且OB•AC=160,有下列四個結(jié)論:

①雙曲線的解析式為y=(x>0);②E點(diǎn)的坐標(biāo)是(5,8);③sin∠COA=;④AC+OB=12.其中正確的結(jié)論有(  )

A.1個  B.2個   C.3個  D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


下列運(yùn)算正確的是( 。

A.a(chǎn)3+a3=a6   B.2(a+b)=2a+b       C.(ab)2=ab﹣2     D.a(chǎn)6÷a2=a4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


2011年北京春季房地產(chǎn)展示交易會期間,某公司對參加本次房交會的消費(fèi)者的年收入和打算購買住房面積這兩項(xiàng)內(nèi)容進(jìn)行了隨機(jī)調(diào)查,共發(fā)放100份問卷,并全部收回.統(tǒng)計相關(guān)數(shù)據(jù)后,制成了如下的統(tǒng)計表和統(tǒng)計圖:

消費(fèi)者年收入統(tǒng)計表

年收入(萬元)

4.8

6

9

12

24

被調(diào)查的消費(fèi)者數(shù)(人)

10

50

30

9

1

請你根據(jù)以上信息,回答下列問題:

(1)補(bǔ)全統(tǒng)計表和統(tǒng)計圖;

(2)打算購買住房面積小于100平方米的消費(fèi)者人數(shù)占被調(diào)查人數(shù)的百分比為   ;

(3)求被調(diào)查的消費(fèi)者平均每人年收入為多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


因式分解:ax2﹣ay2= 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


嘉淇想證明三角形內(nèi)角和是180°和其他一些的命題.請完成下列一些命題和證明.

(1)怎樣證明三角形內(nèi)角和是180°呢?

(2)已知命題:等腰三角形底邊上的中線和頂角的角平分線重合,證明這個命題,并寫出它的逆命題,逆命題成立嗎?

命題: 底邊上的中線和頂角的角平分線重合的三角形是等腰三角形 

證明: 證明:在ABDACD中,

,

∴△ABD≌△ACDSSS),

∴∠BAD=CAD 

由此我們不難發(fā)現(xiàn): 此命題是互逆命題 

那么怎樣證明呢?請寫出證明過程.(可以畫出作圖痕跡.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則sin∠ECB為( 。

A.      B.      C.      D.

查看答案和解析>>

同步練習(xí)冊答案