在一次數(shù)學(xué)探究性學(xué)習(xí)活動(dòng)中,某學(xué)習(xí)小組要制作一個(gè)圓錐體模型,操作規(guī)則是:在一塊邊長為16cm的正方形紙片上剪出一個(gè)扇形和一個(gè)圓,使得扇形圍成圓錐的側(cè)面時(shí),圓恰好是該圓錐的底面.他們首先設(shè)計(jì)了如圖所示的方案一,發(fā)現(xiàn)這種方案不可行,于是他們調(diào)整了扇形和圓的半徑,設(shè)計(jì)了如圖所示的方案二.(兩個(gè)方案的圖中,圓與正方形相鄰兩邊及扇形的弧均相切.方案一中扇形的弧與正方形的兩邊相切)
(1)請(qǐng)說明方案一不可行的理由;
(2)判斷方案二是否可行?若可行,請(qǐng)確定圓錐的母線長及其底面圓半徑;若不可行,請(qǐng)說明理由.
解:(1)理由如下:
∵扇形的弧長=16×=8π,圓錐底面周長=2πr,∴圓的半徑為4cm.
由于所給正方形紙片的對(duì)角線長為cm,而制作這樣的圓錐實(shí)際需要正方形紙片的對(duì)角線長為cm,,
∴方案一不可行.
(2)方案二可行.求解過程如下:
設(shè)圓錐底面圓的半徑為rcm,圓錐的母線長為Rcm,則
, ① . ②
由①②,可得,. 故所求圓錐的母線長為cm,底面圓的半徑為cm.
【解析】(1)首先根據(jù)扇形的弧長公式及圓錐底面周長求出底面圓的半徑,再比較所給正方形紙片的對(duì)角線與制作這樣的圓錐實(shí)際需要正方形紙片的對(duì)角線長即可得到結(jié)論;
(2)先設(shè)出圓錐底面圓的半徑及圓錐的母線長,再根據(jù)正方形的性質(zhì)及圓錐底面周長公式列出方程組,即可得到結(jié)果。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2008年初中畢業(yè)升學(xué)考試(江蘇南通卷)數(shù)學(xué)(帶解析) 題型:解答題
在一次數(shù)學(xué)探究性學(xué)習(xí)活動(dòng)中,某學(xué)習(xí)小組要制作一個(gè)圓錐體模型,操作規(guī)則是:在一塊邊長為16cm的正方形紙片上剪出一個(gè)扇形和一個(gè)圓,使得扇形圍成圓錐的側(cè)面時(shí),圓恰好是該圓錐的底面.他們首先設(shè)計(jì)了如圖所示的方案一,發(fā)現(xiàn)這種方案不可行,于是他們調(diào)整了扇形和圓的半徑,設(shè)計(jì)了如圖所示的方案二.(兩個(gè)方案的圖中,圓與正方形相鄰兩邊及扇形的弧均相切.方案一中扇形的弧與正方形的兩邊相切)
(1)請(qǐng)說明方案一不可行的理由;
(2)判斷方案二是否可行?若可行,請(qǐng)確定圓錐的母線長及其底面圓半徑;若不可行,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:江蘇中考真題 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在一次數(shù)學(xué)探究性學(xué)習(xí)活動(dòng)中,某學(xué)習(xí)小組要制作一個(gè)圓錐體模型,操作規(guī)則是:在一塊邊長為16cm的正方形紙片上剪出一個(gè)扇形和一個(gè)圓,使得扇形圍成圓錐的側(cè)面時(shí),圓恰好是該圓錐的底面.他們首先設(shè)計(jì)了如圖所示的方案一,發(fā)現(xiàn)這種方案不可行,于是他們調(diào)整了扇形和圓的半徑,設(shè)計(jì)了如圖所示的方案二.(兩個(gè)方案的圖中,圓與正方形相鄰兩邊及扇形的弧均相切.方案一中扇形的弧與正方形的兩邊相切)
(1)請(qǐng)說明方案一不可行的理由;
(2)判斷方案二是否可行?若可行,請(qǐng)確定圓錐的母線長及其底面圓半徑;若不可行,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在一次數(shù)學(xué)探究性學(xué)習(xí)活動(dòng)中, 某學(xué)習(xí)小組要制作一個(gè)圓錐體模型, 操作規(guī)則是: 在一塊邊長為16cm的正方形紙片上剪出一個(gè)扇形和一個(gè)圓,使得扇形圍成圓錐的側(cè)面時(shí),圓恰好是該圓錐的底面。他們首先設(shè)計(jì)了如圖所示的方案一,發(fā)現(xiàn)這種方案不可行,于是他們調(diào)整了扇形和圓的半徑,設(shè)計(jì)了如圖所示的方案二。(兩個(gè)方案的圖中,圓與正方形相鄰兩邊及扇形的弧均相切。方案一中扇形的弧與正方形的兩邊相切)
(1)請(qǐng)說明方案一不可行的理由。
(2)判斷方案二是否可行?若可行,請(qǐng)確定圓錐的母線長及其底面圓半徑;若不可行,請(qǐng)說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com