【題目】如圖,邊長一定的正方形ABCD,Q為CD上一個動點,AQ交BD于點M,過M作MN⊥AQ交BC于點N,作NP⊥BD于點P,連接NQ,下列結(jié)論:①AM=MN;②MP= BD;③BN+DQ=NQ;④ 為定值.其中一定成立的是 .

【答案】①②③④
【解析】解:如圖1所示:

作AU⊥NQ于U,連接AN,AC,

∵∠AMN=∠ABC=90°,

∴A,B,N,M四點共圓,

∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,

∴∠ANM=∠NAM=45°,

∴AM=MN,故①正確.

由同角的余角相等知,∠HAM=∠PMN,

在△AHM和△MPN中,

,

∴△AHM≌△MPN(AAS),

∴MP=AH= AC= BD,故②正確,

∵∠BAN+∠QAD=∠NAQ=45°,

∴△ADQ繞點A順時針旋轉(zhuǎn)90度至△ABR,使AD和AB重合,連接AN,

則∠RAQ=90°,△ABR≌△ADQ,

∴AR=AQ,∠RAN=90°﹣45°=45°=∠NAM,

在△AQN和△ANR中,

∴△AQN≌△ANR(SAS),

∴NR=NQ,

則BN=NU,DQ=UQ,

∴點U在NQ上,有BN+DQ=QU+UN=NQ,故③正確.

如圖2所示,作MS⊥AB,垂足為S,作MW⊥BC,垂足為W,點M是對角線BD上的點,

∴四邊形SMWB是正方形,

∴MS=MW=BS=BW,∠SMW=90°,

∴∠AMS=∠NMW,

在△AMS和△NMW中,

∴△AMS≌△NMW(ASA),

∴AS=NW,

∴AB+BN=SB+BW=2BW,

∵BW:BM=1: ,

= = ,故④正確.

所以答案是:①②③④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使DC=BD,連接AC,過點D作DE⊥AC,垂足為E.

(1)求證:DE為⊙O的切線;
(2)若⊙O的半徑為5,∠BAC=60°,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,中,,點上一點,于點,于點

1)若,則   °

2)若點的中點,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018514日川航3U863航班擋風(fēng)玻璃在高空爆裂,機組臨危不亂,果斷應(yīng)對,正確處置,順利返航,避免了一場災(zāi)難的發(fā)生,創(chuàng)造了世界航空史上的奇跡!下表給出了距離地面高度與所在位置的溫度之間的大致關(guān)系.根據(jù)下表,請回答以下幾個問題:

距離地面高度(千米)

0

1

2

3

4

5

所在位置的溫度(

20

14

8

2

1)上表反映的兩個變量中,______是自變量,______是因變量.

2)若用h表示距離地面的高度,用y表示表示溫度,則yh的之間的關(guān)系式是:__________;

當(dāng)距離地面高度5千米時,所在位置的溫度為:_________℃

如圖是當(dāng)日飛機下降過程中海拔高度與玻璃爆裂后立即返回地面所用時間關(guān)系圖.根據(jù)圖象回答以下問題:

3)點A表示的意義是什么?返回途中飛機在2千米高空水平大約盤旋了幾分鐘?

4)飛機發(fā)生事故時所在高空的溫度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上一點,且AB=14.動點P從點A出發(fā),以每秒5個單位長度的速度沿數(shù)軸向左勻速運動,設(shè)運動時間為tt>0秒.

1寫出數(shù)軸上點B表示的數(shù) ,點P表示的數(shù) 用含t的代數(shù)式表示;

2動點Q從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā),問點P運動多少秒時追上點Q?

3若M為AP的中點,N為PB的中點.點P在運動的過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請你畫出圖形,并求出線段MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題:計算
(1)計算:( 1﹣3tan30°+(1﹣π)0
(2)解分式方程: = ﹣1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線和直線互相垂直,垂足為,直線于點B,E是線段AB上一定點,D為線段OB上的一動點(點D不與點O、B重合),于點,連接AC

1)當(dāng),則___________°;

2)當(dāng)時,請判斷CDAC的位置關(guān)系,并說明理由;

3)若的角平分線的交點為P,當(dāng)點D在線段上運動時,問的大小是否會發(fā)生變化?若不變,求出的大小,并說明理由;若變化,求其變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:如圖1,等腰ABC中,AB=ACBAC=120°,作ADBC于點D,則DBC的中點,BAD=BAC=60°,于是 = =

遷移應(yīng)用:如圖2,ABCADE都是等腰三角形,BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD

求證:ADB≌△AEC

請直接寫出線段AD,BD,CD之間的等量關(guān)系式;

拓展延伸:如圖3,在菱形ABCD中,ABC=120°,在ABC內(nèi)作射線BM,作點C關(guān)于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF

證明CEF是等邊三角形;

AE=5CE=2,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O為直線BC上一定點,點A在直線外一定點.在直線BC上取點P,使得以O、AP為頂點的三角形為等腰三角形.

(1)當(dāng)∠AOC=30°時,如果我們通過分類討論、畫圖嘗試可以找到滿足條件的點P共有______個.

(2)若在直線BC上有且只有兩個滿足條件的點P,則∠AOC=______

查看答案和解析>>

同步練習(xí)冊答案