【題目】某種商品每天的銷售利潤y(元)與銷售單價x(元)之間滿足關系:y=ax2+bx﹣75.其圖象如圖所示.
(1)銷售單價為多少元時,該種商品每天的銷售利潤最大?最大利潤為多少元?
(2)銷售單價在什么范圍時,該種商品每天的銷售利潤不低于16元?
【答案】
(1)解;y=ax2+bx﹣75圖象過點(5,0)、(7,16),
∴ ,
解得 ,
y=﹣x2+20x﹣75的頂點坐標是(10,25)
當x=10時,y最大=25,
答:銷售單價為10元時,該種商品每天的銷售利潤最大,最大利潤為25元;
(2)解;∵函數(shù)y=﹣x2+20x﹣75圖象的對稱軸為直線x=10,
可知點(7,16)關于對稱軸的對稱點是(13,16),
又∵函數(shù)y=﹣x2+20x﹣75圖象開口向下,
∴當7≤x≤13時,y≥16.
答:銷售單價不少于7元且不超過13元時,該種商品每天的銷售利潤不低于16元.
【解析】(1)根據(jù)待定系數(shù)法,可得二次函數(shù)解析式,根據(jù)頂點坐標,可得答案;(2)根據(jù)函數(shù)值大于或等于16,可得不等式的解集,可得答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A(m,4),B(﹣4,n)在反比例函數(shù)y= (k>0)的圖象上,經(jīng)過點A、B的直線與x軸相交于點C,與y軸相交于點D.
(1)若m=2,求n的值;
(2)求m+n的值;
(3)連接OA、OB,若tan∠AOD+tan∠BOC=1,求直線AB的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】鹽城電視塔是我市標志性建筑之一.如圖,在一次數(shù)學課外實踐活動中,老師要求測電視塔的高度AB.小明在D處用高1.5m的測角儀CD,測得電視塔頂端A的仰角為30°,然后向電視塔前進224m到達E處,又測得電視塔頂端A的仰角為60°.求電視塔的高度AB.( 取1.73,結(jié)果精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在正方形ABCD中,點P沿邊DA從點D開始向點A以1cm/s的速度移動;同時,點Q沿邊AB、BC從點A開始向點C以2cm/s的速度移動.當點P移動到點A時,P、Q同時停止移動.設點P出發(fā)xs時,△PAQ的面積為ycm2 , y與x的函數(shù)圖象如圖②,則線段EF所在的直線對應的函數(shù)關系式為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的弦,OP⊥OA交AB于點P,過點B的直線交OP的延長線于點C,且CP=CB.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為 ,OP=1,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3cm,E為CD邊上一點,∠DAE=30°,M為AE的中點,過點M作直線分別與AD、BC相交于點P、Q.若PQ=AE,則AP等于cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,下列4×4網(wǎng)格圖都是由16個相同小正方形組成,每個網(wǎng)格圖中有4個小正方形已涂上陰影,請在空白小正方形中,按下列要求涂上陰影.
(1)在圖1中選取2個空白小正方形涂上陰影,使6個陰影小正方形組成一個中心對稱圖形;
(2)在圖2中選取2個空白小正方形涂上陰影,使6個陰影小正方形組成一個軸對稱圖形,但不是中心對稱圖形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com