【答案】
分析:(1)△BDA沿BD翻折,使點A落在BC邊上的點F處,可以知道四邊形ADFB是正方形,因而BF=AB=OC=2,則CF=3-2=1,因而E、F的坐標就可以求出.
(2)頂點為F的坐標根據第一問可以求得是(1,2),因而拋物線的解析式可以設為y=a(x-1)
2+2,以點E、F、P為頂點的三角形是等腰三角形,應分EF是腰和底邊兩種情況進行討論.
當EF是腰,EF=PF時,已知E、F點的坐標可以求出EF的長,設P點的坐標是(0,n),根據勾股定理就可以求出n的值.得到P的坐標.
當EF是腰,EF=EP時,可以判斷E到y(tǒng)軸的最短距離與EF的大小關系,只有當EF大于E到y(tǒng)軸的距離,P才存在.
當EF是底邊時,EP=FP,根據勾股定理就可以得到關于n的方程,就可以解得n的值.
(3)作點E關于x軸的對稱點E′,作點F關于y軸的對稱點F′,連接E′F′,分別與x軸、y軸交于點M,N,則點M,N就是所求點.求出線段E′F′的長度,就是四邊形MNFE的周長的最小值.
解答:解:(1)E(3,1);F(1,2).
(2)在Rt△EBF中,∠B=90°,
∴EF=
.
設點P的坐標為(0,n),其中n>0,
∵頂點F(1,2),
∴設拋物線解析式為y=a(x-1)
2+2(a≠0).
①如圖1,
當EF=PF時,EF
2=PF
2,
∴1
2+(n-2)
2=5.
解得n
1=0(舍去);n
2=4.
∴P(0,4).
∴4=a(0-1)
2+2.
解得a=2.
∴拋物線的解析式為y=2(x-1)
2+2
②如圖2,
當EP=FP時,EP
2=FP
2,
∴(2-n)
2+1=(1-n)
2+9.
解得
(舍去)
③當EF=EP時,EP=
,這種情況不存在.
綜上所述,符合條件的拋物線解析式是y=2(x-1)
2+2.
(3)存在點M,N,使得四邊形MNFE的周長最小.
如圖3,作點E關于x軸的對稱點E′,作點F關于y軸的對稱點F′,
連接E′F′,分別與x軸、y軸交于點M,N,則點M,N就是所求點.
∴E′(3,-1),F(xiàn)′(-1,2),NF=NF′,ME=ME′.
∴BF′=4,BE′=3.
∴FN+NM+ME=F′N+NM+ME′=E′F′=
.
又∵
,
∴FN+MN+ME+EF=5+
,此時四邊形MNFE的周長最小值是
.
點評:本題主要考查了待定系數法求函數解析式,求線段的和最小的問題基本的解決思路是根據對稱轉化為兩點之間的距離的問題.