在△ABC中,BD,CD分別是∠ABC和∠ACB的平分線,且∠BDC=110°,∠A=
40°
40°
分析:先根據(jù)角平分線的性質(zhì)求出∠DBC、∠DCB與∠A的關(guān)系,再根據(jù)三角形內(nèi)角和定理求解即可.
解答:解:∵BD、CD是∠ABC和∠ACB的角平分線,
∴∠DBC=
1
2
∠ABC,∠DCB=
1
2
∠ACB,
∵∠ABC+∠ACB=180°-∠A,
∠BDC=180°-∠DBC-∠DCB=180°-
1
2
(∠ABC+∠ACB)=180°-
1
2
(180°-∠A)=90°+
1
2
∠A=110°,
∴∠A=40°.
故答案是:40°.
點(diǎn)評:本題考查的是角平分線的性質(zhì)及三角形內(nèi)角和定理.三角形內(nèi)角和定理:三角形的內(nèi)角和為180°.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、已知,如圖,在△ABC中,BD⊥AC于D,若∠A:∠ABC:∠ACB=3:4:5,試求∠ABD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,在△ABC中,BD是∠ABC的平分線,DF⊥AB于F,DE⊥BC于E.求證BD⊥EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,BD,CD分別是∠ABC、∠ACB的平分線,BP、CP分別是∠EBC、∠FCB的平分線,且它們分別交于D、P.
(1)若∠A=30°,求∠BDC、∠BPC.
(2)不論∠A為多少時,探索∠D+∠P的值是變化還是不變化?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,BD、CE是角平分線且交于點(diǎn)F,∠A=70°,則∠BFC=
125
125
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在△ABC中,BD平分∠ABC且BD⊥AC于D,DE∥BC與AB相交于E.AB=5cm、AC=2cm,則△ADE的周長=( 。

查看答案和解析>>

同步練習(xí)冊答案