【題目】如圖,△ABC為等邊三角形,點D為BC邊上一動點(不與點B,C重合),∠DAE=60°,過點B作BE∥AC交AE于點E.

(1)求證:△ADE是等邊三角形;

(2)當(dāng)點D在何處時,AE⊥BE?指出點D的位置,并說明理由.

【答案】(1)見解析;(2)當(dāng)點D為BC的中點時,AE⊥BE,理由見解析.

【解析】

(1)根據(jù)等邊三角形的性質(zhì)得到AB=AC,BAC=C=60°,由∠DAE=60°得到∠DAE=BAC,推出∠EAB=DAC,根據(jù)平行線的性質(zhì)得到∠EBA=BAC,推出∠EBA=C,證得AEB≌△ADC,根據(jù)全等三角形的性質(zhì)得到AE=AD,即可得到結(jié)論;
(2)當(dāng)DAC中點時.根據(jù)等腰三角形的性質(zhì)得到ADBC,于是得到∠ADC=90°,根據(jù)全等三角形的性質(zhì)得到∠AEB=ADC=90°,可得結(jié)論.

(1) 證明:(1)∵△ABC是等邊三角形,
AB=AC,BAC=C=60°,
∵∠DAE=60°
∴∠DAE=BAC,
∴∠DAE-BAD=BAC-BAD,
∴∠EAB=DAC,
BEAC,
∴∠EBA=BAC,
∴∠EBA=C,
AEBADC中,

,

∴△AEB≌△ADC,
AE=AD,
∵∠DAE=60°,
∴△ADE是等邊三角形;

(2) 當(dāng)DAC中點時.
AB=AC,DAC中點,
ADBC,
∴∠ADC=90°,
∵△AEB≌△ADC,
∴∠AEB=ADC=90°,
AEBE.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=2x與反比例函數(shù)y= 在第一象限內(nèi)的圖象交于點A(m,2),將直線y=2x向下平移4個單位后與反比例函數(shù)y= 在第一象限內(nèi)的圖象交于點P,則k=;△POA的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李大伯承包了一片荒山,在山上種植了一部分優(yōu)質(zhì)油桃,今年已進(jìn)入第三年收獲期.今年收獲油桃6 912千克,已知李大伯第一年收獲的油桃重量為4 800千克.試求去年和今年兩年油桃產(chǎn)量的年平均增長率,照此增長率,預(yù)計明年油桃的產(chǎn)量為多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在求1+3+32+33+34+35+36+37+38的值時,張紅發(fā)現(xiàn):從第二個加數(shù)起每一個加數(shù)都是前一個加數(shù)的3倍,于是她假設(shè):S=1+3+32+33+34+35+36+37+38①,然后在①式的兩邊都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②一①得:3S﹣S=39﹣1,即2S=39﹣1,∴S= .得出答案后,愛動腦筋的張紅想:如果把“3”換成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正確答案是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,一天上午6點鐘,言老師從學(xué)校出發(fā),乘車上市里開會,8點準(zhǔn)時到會場,中午12點鐘回到學(xué)校,他這一段時間內(nèi)的行程s(km)(即離開學(xué)校的距離)與時間()的關(guān)系可用圖中的折線表示,根據(jù)圖中提供的有關(guān)信息,解答下列問題:

(1)開會地點離學(xué)校多遠(yuǎn)?

(2)請你用一段簡短的話,對言老師從上午6點到中午12點的活動情況進(jìn)行描述.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分式中,在分子、分母都是整式的情況下,如果分子的次數(shù)低于分母的次數(shù),稱這樣的分式為真分式.例如,分式是,是真分式.如果分子的次數(shù)不低于分母的次數(shù),稱這樣的分式為假分式.例如,分式是假分式.一個假分式可以化為一個整式與一個真分式的和.例如,==1-

1)將假分式化為一個整式與一個真分式的和;

2)如果分式的值為整數(shù),求x的整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BF平行于正方形ADCD的對角線AC,點EBF上,且AE=AC,CF∥AE,求∠BCF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C,D是⊙O上的點,且OC∥BD,AD分別與BC,OC相交于點E,F(xiàn),則下列結(jié)論:
①AD⊥BD;②∠AOC=∠AEC;③BC平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是( )

A.②④⑤⑥
B.①③⑤⑥
C.②③④⑥
D.①③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角△ABC,AD平分∠BACBC于點D,點MN分別是ADAB上的動點,當(dāng)SABC=6,AC=4,BM+MN的最小值等于_______。

查看答案和解析>>

同步練習(xí)冊答案