閱讀理解

拋物線y=x2上任意一點(diǎn)到點(diǎn)(0,1)的距離與到直線y=﹣1的距離相等,你可以利用這一性質(zhì)解決問題.

問題解決

如圖,在平面直角坐標(biāo)系中,直線y=kx+1與y軸交于C點(diǎn),與函數(shù)y=x2的圖象交于A,B兩點(diǎn),分別過A,B兩點(diǎn)作直線y=﹣1的垂線,交于E,F(xiàn)兩點(diǎn).

(1)寫出點(diǎn)C的坐標(biāo),并說明∠ECF=90°;

(2)在△PEF中,M為EF中點(diǎn),P為動(dòng)點(diǎn).

①求證:PE2+PF2=2(PM2+EM2);

②已知PE=PF=3,以EF為一條對(duì)角線作平行四邊形CEDF,若1<PD<2,試求CP的取值范圍.

 


解:(1)當(dāng)x=0時(shí),y=k•0+1=1,

則點(diǎn)C的坐標(biāo)為(0,1).

根據(jù)題意可得:AC=AE,

∴∠AEC=∠ACE.

∵AE⊥EF,CO⊥EF,

∴AE∥CO,

∴∠AEC=∠OCE,

∴∠ACE=∠OCE.

同理可得:∠OCF=∠BCF.

∵∠ACE+∠OCE+∠OCF+∠BCF=180°,

∴2∠OCE+2∠OCF=180°,

∴∠OCE+∠OCF=90°,即∠ECF=90°;

(2)①過點(diǎn)P作PH⊥EF于H,

Ⅰ.若點(diǎn)H在線段EF上,如圖2①.

∵M(jìn)為EF中點(diǎn),

∴EM=FM=EF.

根據(jù)勾股定理可得:

PE2+PF2﹣2PM2=PH2+EH2+PH2+HF2﹣2PM2

=2PH2+EH2+HF2﹣2(PH2+MH2

=EH2﹣MH2+HF2﹣MH2

=(EH+MH)(EH﹣MH)+(HF+MH)(HF﹣MH)

=EM(EH+MH)+MF(HF﹣MH)

=EM(EH+MH)+EM(HF﹣MH)

=EM(EH+MH+HF﹣MH)

=EM•EF=2EM2

∴PE2+PF2=2(PM2+EM2);

Ⅱ.若點(diǎn)H在線段EF的延長線(或反向延長線)上,如圖2②.

同理可得:PE2+PF2=2(PM2+EM2).

綜上所述:當(dāng)點(diǎn)H在直線EF上時(shí),都有PE2+PF2=2(PM2+EM2);

②連接CD、PM,如圖3.

∵∠ECF=90°,

∴▱CEDF是矩形,

∵M(jìn)是EF的中點(diǎn),

∴M是CD的中點(diǎn),且MC=EM.

由①中的結(jié)論可得:

在△PEF中,有PE2+PF2=2(PM2+EM2),

在△PCD中,有PC2+PD2=2(PM2+CM2).

∵M(jìn)C=EM,

∴PC2+PD2=PE2+PF2

∵PE=PF=3,

∴PC2+PD2=18.

∵1<PD<2,

∴1<PD2<4,

∴1<18﹣PC2<4,

∴14<PC2<17.

∵PC>0,

<PC<

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


現(xiàn)有甲、乙兩個(gè)合唱隊(duì)隊(duì)員的平均身高為170cm,方程分別是S2、S2,且S2>S2,則兩個(gè)隊(duì)的隊(duì)員的身高較整齊的是(  )

 

A.

甲隊(duì)

B.

乙隊(duì)

C.

兩隊(duì)一樣整齊

D.

不能確定

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交AB于點(diǎn)D,交BC于點(diǎn)E.

(1)求證:BE=CE;

(2)若BD=2,BE=3,求AC的長.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,AB和⊙O切于點(diǎn)B,AB=5,OB=3,則tanA=  

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


為弘揚(yáng)“東亞文化”,某單位開展了“東亞文化之都”演講比賽,在安排1位女選手和3位男選手的出場(chǎng)順序時(shí),采用隨機(jī)抽簽方式.

(1)請(qǐng)直接寫出第一位出場(chǎng)是女選手的概率;

(2)請(qǐng)你用畫樹狀圖或列表的方法表示第一、二位出場(chǎng)選手的所有等可能結(jié)果,并求出他們都是男選手的概率.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


函數(shù)的圖象的一條對(duì)稱軸的方程是(   )

A.            B.            C.           D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知函數(shù),該函數(shù)在區(qū)間上的最大值是      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整點(diǎn),如果函數(shù)的圖象恰好通過個(gè)整點(diǎn),則稱函數(shù)階整點(diǎn)函數(shù).有下列函數(shù):

;  ②  ③   ④

其中是一階整點(diǎn)函數(shù)有(     ) 個(gè)  

   A.1      B.2     C.3      D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


把不等式x+2≤0的解集在數(shù)軸上表示出來,則正確的是(  )

 

A.

B.

C.

D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案