精英家教網(wǎng)已知,如圖,在矩形ABCD中,M是邊BC的中點(diǎn),AB=3,BC=4,⊙D與直線AM相切于點(diǎn)E,
求⊙D的半徑.
分析:連接DE.根據(jù)切線的性質(zhì)得DE⊥AM,根據(jù)矩形的性質(zhì)可證明△ADE∽△MAB,則
DE
AD
=
AB
AM
,由已知可求出AM的長(zhǎng),進(jìn)而得出⊙D的半徑.
解答:解:連接DE.(1分)
∵⊙D與直線AM相切于點(diǎn)E,∴DE⊥AM.(1分)
在矩形ABCD中,
∵AD∥BC,∴∠DAE=∠AMB.(1分)
∵∠AED=∠B=90°,∴△ADE∽△MAB.(1分)
DE
AD
=
AB
AM
.(1分)精英家教網(wǎng)
∵AB=3,BC=AD=4,BM=CM=2,∴AM=
13
.(1分)
DE
4
=
3
13
.解得DE=
12
13
13
,即⊙D的半徑為
12
13
13
.(1分)
點(diǎn)評(píng):本題考查了切線的性質(zhì)、矩形的性質(zhì)以及相似三角形的判定和性質(zhì),是基礎(chǔ)知識(shí)要熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,在矩形ABCD中,P是邊AD上的動(dòng)點(diǎn),PE垂直AC于E,PF垂直BD于F,如果AB=3,AD=4,那么(  )
A、PE+PF=
12
5
B、
12
5
<PE+PF<
13
5
C、PE+PF=5
D、3<PE+PF<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在矩形ABCD中,AC是對(duì)角線.點(diǎn)P為矩形外一點(diǎn)且滿足AP=PC,AP⊥PC.PC交AD于點(diǎn)N,連接DP,過(guò)點(diǎn)P作PM⊥PD交AD于M.
(1)若AP=
5
,AB=
1
3
BC,求矩形ABCD的面積;
(2)若CD=PM,求證:AC=AP+PN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在矩形ABCD中,AB=4,AD=10,F(xiàn)是AD上一點(diǎn),CF⊥EF于點(diǎn)F交AB于點(diǎn)E,
DC
CF
=
1
2
.求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在矩形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,BE⊥AC于E,CF⊥BD于F,請(qǐng)你判斷BE與CF的大小關(guān)系,并說(shuō)明你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案