已知如圖,梯形ABCD的面積是4cm2,M為CD中點,連AM,BM,則△ABM的面積是   
【答案】分析:首先作輔助線:延長AM交BC的延長線于點N,然后利用梯形的性質(zhì),即可證得△ADM≌△NCM(AAS),根據(jù)全等三角形的性質(zhì)得出S△ADM=S△NCM,再根據(jù)AM=MN=AN求出S△ABN,最后根據(jù)S△ABM=S△ABN即可求得△ABM的面積;
解答:解:延長AM交BC的延長線于點N,
∵AD∥BC,
∴∠DAM=∠N,∠D=∠MCN,
∵點M是邊CD的中點,
∴DM=CM,
∴在△ADM和△NCM中,

∴△ADM≌△NCM(AAS),
∴S△ADM=S△NCM,AM=MN=AN,
∴S△ABN=S梯形ABCD=4,
∴S△ABM=S△ABN=×4=2;
∴△ABM的面積是2cm2
故填:2cm2
點評:此題考查了梯形的性質(zhì)與全等三角形的判定與性質(zhì),此題綜合性比較強(qiáng),同學(xué)們應(yīng)該多做積累,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用,注意輔助線的作法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•通州區(qū)一模)已知如圖,在△ABC中,AB=AC,∠ABC=α,將△ABC以點B為中心,沿逆時針方向旋轉(zhuǎn)α度(0°<α<90°),得到△BDE,點B、A、E恰好在同一條直線上,連接CE.
(1)則四邊形DBCE是
形(填寫:平行四邊形、矩形、菱形、正方形、梯形)
(2)若AB=AC=1,BC=
3
,請你求出四邊形DBCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,等腰梯形ABCD的邊BCx軸上,點Ay軸的正方向上,A( 0, 6 ),D ( 4,6),且AB=.

(1)求點B的坐標(biāo);

(2)求經(jīng)過( 。

A. B.D三點的拋物線的解析式;

(3)在(2)中所求的拋物線上是否存在一點P,使得S△ABC  = S梯形ABCD  ?若存在,請求出該點坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,在△ABC中,AB=AC,∠ABC=α,將△ABC以點B為中心,沿逆時針方向旋轉(zhuǎn)α度(0°<α<90°),得到△BDE,點BA、E恰好在同一條直線上,連結(jié)CE.

(1)則四邊形DBCE是_______形(填寫:平行四邊形、矩形、菱形、正方形、梯形)

(2)若AB=AC=1,BC=,請你求出四邊形DBCE的面積.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆北京市通州區(qū)九年級中考一模數(shù)學(xué)卷(帶解析) 題型:解答題

已知如圖,在△ABC中,AB=AC,∠ABC=α,將△ABC以點B為中心,沿逆時針方向旋轉(zhuǎn)α度(0°<α<90°),得到△BDE,點BA、E恰好在同一條直線上,連結(jié)CE.

(1)則四邊形DBCE是_______形(填寫:平行四邊形、矩形、菱形、正方形、梯形)
(2)若AB=AC=1,BC=,請你求出四邊形DBCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年北京市通州區(qū)九年級中考一模數(shù)學(xué)卷(解析版) 題型:解答題

已知如圖,在△ABC中,AB=AC,∠ABC=α,將△ABC以點B為中心,沿逆時針方向旋轉(zhuǎn)α度(0°<α<90°),得到△BDE,點B、A、E恰好在同一條直線上,連結(jié)CE.

(1)則四邊形DBCE是_______形(填寫:平行四邊形、矩形、菱形、正方形、梯形)

(2)若AB=AC=1,BC=,請你求出四邊形DBCE的面積.

 

查看答案和解析>>

同步練習(xí)冊答案