【題目】如圖,正方形ABCD的對角線相交于點O,點M,N分別是邊BC,CD上的動點(不與點B,C,D重合),AM,AN分別交BD于點E,F(xiàn),且∠MAN始終保持45°不變.

(1)求證: = ;
(2)求證:AF⊥FM;
(3)請?zhí)剿鳎涸凇螹AN的旋轉(zhuǎn)過程中,當(dāng)∠BAM等于多少度時,∠FMN=∠BAM?寫出你的探索結(jié)論,并加以證明.

【答案】
(1)

證明:∵四邊形ABCD是正方形,

∴∠ABD=∠CBD=45°,∠ABC=90°,

∵∠MAN=45°,

∴∠MAF=∠MBE,

∴A、B、M、F四點共圓,

∴∠ABM+∠AFM=180°,

∴∠AFM=90°,

∴∠FAM=∠FMA=45°,

∴AM= AF,



(2)

證明:由(1)可知∠AFM=90°,

∴AF⊥FM


(3)

結(jié)論:∠BAM=22.5時,∠FMN=∠BAM

理由:

∵A、B、M、F四點共圓,

∴∠BAM=∠EFM,

∵∠BAM=∠FMN,

∴∠EFM=∠FMN,

∴MN∥BD,

,∵CB=DC,

∴CM=CN,

∴MB=DN,

在△ABM和△ADN中,

,

∴△ABM≌△ADN,

∴∠BAM=∠DAN,

∵∠MAN=45°,

∴∠BAM+∠DAN=45°,

∴∠BAM=22.5°.


【解析】(1)先證明A、B、M、F四點共圓,根據(jù)圓內(nèi)接四邊形對角互補即可證明∠AFM=90°,根據(jù)等腰直角三角形性質(zhì)即可解決問題.(2)由(1)的結(jié)論即可證明.(3)由:A、B、M、F四點共圓,推出∠BAM=∠EFM,因為∠BAM=∠FMN,所以∠EFM=∠FMN,推出MN∥BD,得到 ,推出BM=DN,再證明△ABM≌△ADN即可解決問題.本題考查四邊形綜合題、等腰直角三角形性質(zhì)、四點共圓、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是利用四點共圓的性質(zhì)解決問題,題目有點難,用到四點共圓.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售A,B兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進價和售價如表所示

A

B

進價(萬元/套)

1.5

1.2

售價(萬元/套)

1.65

1.4

該商場計劃購進兩種教學(xué)設(shè)備若干套,共需66萬元,全部銷售后可獲毛利潤9萬元.
(1)該商場計劃購進A,B兩種品牌的教學(xué)設(shè)備各多少套?
(2)通過市場調(diào)研,該商場決定在原計劃的基礎(chǔ)上,減少A種設(shè)備的購進數(shù)量,增加B種設(shè)備的購進數(shù)量,已知B種設(shè)備增加的數(shù)量是A種設(shè)備減少的數(shù)量的1.5倍.若用于購進這兩種教學(xué)設(shè)備的總資金不超過69萬元,問A種設(shè)備購進數(shù)量至多減少多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為10,AG=CH=8,BG=DH=6,連接GH,則線段GH的長為( )

A.
B.
C.
D.10﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由一些相同的小正方體搭成的幾何體的左視圖和俯視圖如圖所示,請在網(wǎng)格中涂出一種該幾何體的主視圖,且使該主視圖是軸對稱圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校隨機抽取部分學(xué)生,就“學(xué)習(xí)習(xí)慣”進行調(diào)查,將“對自己做錯的題目進行整理、分析、改正”選項為:很少、有時、常常、總是的調(diào)查數(shù)據(jù)進行了整理,繪制成部分統(tǒng)計圖如下:

請根據(jù)圖中信息,解答下列問題

該調(diào)查的樣本容量為______,______,______,“常!睂(yīng)扇形的圓心角為______

請你補全條形統(tǒng)計圖;

若該校共有3200名學(xué)生,請你估計其中“總是”對錯題進行整理、分析、改正的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校一間階梯教室中,第1排的座位數(shù)為a,從第2排開始,每一排都比前一排增加兩個座位

1請你在下表的空格里填寫一個適當(dāng)?shù)氖阶樱?/span>

第1排的

座位數(shù)

第2排的

座位數(shù)

第3排的

座位數(shù)

第4排的

座位數(shù)

a

a+2

a+4

2寫出第n排座位數(shù)的表達式;

3求當(dāng)a=20時,第10排的座位數(shù)是多少?若這間階梯教室共有15排,那么最多可容納多少學(xué)員?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在∠O的一邊OA上.按要求畫圖并填空:

(1)過點A畫直線ABOA,與∠O的另一邊相交于點B;過點AOB的垂線段AC,垂足為點C;過點C畫直線CDOA,交直線AB于點D。

(2)CDB=________°;

(3)如果OA=8,AB=6,OB=10,則點A到直線OB的距離為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為5,點A的坐標(biāo)為(﹣4,0),點By軸上,若反比例函數(shù)y=k≠0)的圖象過點C,則該反比例函數(shù)的表達式為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC,A、B、C之和為多少?為什么?

A+B+C=180°

理由:作∠ACD=A,并延長BCE

∵∠ACD=   (已作)

ABCD(   

∴∠B=      

而∠ACB+ACD+DCE=180°

∴∠ACB+   +   =180°(   

查看答案和解析>>

同步練習(xí)冊答案