【題目】如圖,在菱形ABCD中,∠ABC=60°,過點A作AE⊥CD于點E,交對角線BD于點F,過點F作FG⊥AD于點G.
(1)若AB=2,求四邊形ABFG的面積;
(2)求證:BF=AE+FG.
【答案】(1) ;(2)證明見解析.
【解析】
(1)根據(jù)菱形的性質(zhì)和垂線的性質(zhì)可得∠ABD=30°,∠DAE=30°,然后再利用三角函數(shù)及勾股定理在Rt△ABF中,求得AF,在Rt△AFG中,求得FG和AG,再運用三角形的面積公式求得四邊形ABFG的面積;
(2)設(shè)菱形的邊長為a,根據(jù)(1)中的結(jié)論在Rt△ABF、Rt△AFG、Rt△ADE 中分別求得BF、FG、AE,然后即可得到結(jié)論.
解:(1)∵四邊形ABCD是菱形,
∴AB∥CD,BD平分∠ABC,
又∵AE⊥CD,∠ABC=60°,
∴∠BAE=∠DEA=90°,∠ABD=30°,
∴∠DAE=30°,
在Rt△ABF中,tan30°=,即,解得AF=,
∵FG⊥AD,
∴∠AGF=90°,
在Rt△AFG中,FG=AF=,
∴AG==1.
所以四邊形ABFG的面積=S△ABF+S△AGF=;
(2)設(shè)菱形的邊長為a,則在Rt△ABF中,BF=,AF=,
在Rt△AFG中,FG=AF=,
在Rt△ADE中,AE=,
∴AE+FG=,
∴BF=AE+FG.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對垃圾進(jìn)行分類投放,能有效提高對垃圾的處理和再利用,減少污染,保護(hù)環(huán)境.為了調(diào)查同學(xué)們對垃圾分類知識的了解程度,增強(qiáng)同學(xué)們的環(huán)保意識,普及垃圾分類及投放的相關(guān)知識,某校數(shù)學(xué)興趣小組的同學(xué)設(shè)計了“垃圾分類知識及投放情況”問卷,并在本校隨機(jī)抽取部分同學(xué)進(jìn)行問卷測試,把測試成績分成“優(yōu)、良、中、差”四個等級,繪制了如下不完整的統(tǒng)計圖:
根據(jù)以上統(tǒng)計信息,解答下列問題:
(1)求成績是“優(yōu)”的人數(shù)占抽取人數(shù)的百分比;
(2)求本次隨機(jī)抽取問卷測試的人數(shù);
(3)請把條形統(tǒng)計圖補充完整;
(4)若該校學(xué)生人數(shù)為3000人,請估計成績是“優(yōu)”和“良”的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了加強(qiáng)建設(shè)“經(jīng)濟(jì)強(qiáng)、環(huán)境美、后勁足、群眾富”的實力城鎮(zhèn),聚力脫貧攻堅,全面完成脫貧任務(wù),某鄉(xiāng)鎮(zhèn)特制定一系列幫扶計劃,F(xiàn)決定將A、B兩種類型魚苗共320箱運到某村養(yǎng)殖,其中A種魚苗比B種魚苗多80箱。
(1)求A種魚苗和B種魚苗各多少箱?
(2)現(xiàn)計劃租用甲、乙兩種貨車共8輛,一次性將這批魚苗全部運往同一目的地。已知甲種貨車最多可裝A種魚苗40箱和B種魚苗10箱,乙種貨車最多可裝A種魚苗和B種魚苗各20箱。如果甲種貨車每輛需付運輸費4000元,乙種貨車每輛需付運輸費3600元,則安排甲、乙兩種貨車有哪幾種不同的方案?并說明選擇哪種方案可使運輸費最少?最少運輸費是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,,點是射線上一動點(與點不重合),分別平分和,分別交射線于點.
(1) ; ;
(2)當(dāng)點運動到某處時,,求此時的度數(shù).
(3)當(dāng)點運動時,:的比值是否隨之變化?若不變,請求出這個比值;若變化,請找出變化規(guī)律;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD是由六個正方形組成的完美長方形,中間最小正方形的面積是1,最大正方形的邊長為x.
(1)用x的代數(shù)式表示長方形ABCD的長是______或______、寬是______;
(2)求長方形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于頻率與概率有下列幾種說法:①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“拋一枚硬幣正面朝上的概率為”表示每拋兩次就有一次正面朝上;③“某彩票中獎的概率是1%”表示買10張該種彩票不可能中獎;④“拋一枚硬幣正面朝上的概率為”表示隨著拋擲次數(shù)的增加,“拋出正面朝上”這一事件發(fā)生的頻率穩(wěn)定在附近,正確的說法是( )
A. ②④B. ②③C. ①④D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】★若兩個扇形滿足弧長的比等于它們半徑的比,則稱這兩個扇形相似.如圖,如果扇形AOB與扇形A1O1B1是相似扇形,且半徑OA∶O1A1=k(k為不等于0的常數(shù)).那么下面四個結(jié)論:①∠AOB=∠A1O1B1;②△AOB∽△A1O1B1;③=k;④扇形AOB與扇形A1O1B1的面積之比為k2.成立的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的一塊地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,則這塊地的面積為( 。┢椒矫祝
A. 96 B. 204 C. 196 D. 304
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com