精英家教網 > 初中數學 > 題目詳情
辨析題:在△ABC中,已知AB>AC,求證:AB=AC.
證明:如圖,作∠BAC的平分線與邊BC的中垂線交于點O,
則OB=OC,再作OE垂直AB于E,OF垂直AC于F,則OE=OF,
∴Rt△BOE≌Rt△COF,
∴BE=CF,①
在Rt△AOE和Rt△AOF中,OE=OF,AO=AO,
∴Rt△AOE≌Rt△AOF
∴AE=AF,②
由①、②得,AB=AC.
上述畫圖與證明過程中,哪里出錯了呢?
這說明我們今后在解題時又要注意什么呢?
在△ABC中,AB>AC,∠BAC的平分線與邊BC的中垂線相交于點O,OE垂直AB于點E,那么三條線段AB、AC、BE有何等量關系?請你寫出來并加以證明.
精英家教網
圖形出現(xiàn)錯誤,如圖所示:

精英家教網


三條線段AB、AC、BE的等量關系為AB=AC+2BE,理由如下:
∵AO為∠BAC的平分線,OE⊥AB,OF⊥AC,
∴OE=OF,
在Rt△AOE和Rt△AOF中,
OA=OA
OE=OF
,
∴Rt△OEB≌Rt△OFC(HL),
∴AE=AF,
又OM為BC的垂直平分線,
∴OB=OC,
在Rt△OEB和Rt△OFC中,
OB=OC
OE=OF
,
∴Rt△OEB≌Rt△OFC(HL),
∴BE=CF,
則AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

辨析題:在△ABC中,已知AB>AC,求證:AB=AC.
證明:如圖,作∠BAC的平分線與邊BC的中垂線交于點O,
則OB=OC,再作OE垂直AB于E,OF垂直AC于F,則OE=OF,
∴Rt△BOE≌Rt△COF,
∴BE=CF,①
在Rt△AOE和Rt△AOF中,OE=OF,AO=AO,
∴Rt△AOE≌Rt△AOF
∴AE=AF,②
由①、②得,AB=AC.
上述畫圖與證明過程中,哪里出錯了呢?
這說明我們今后在解題時又要注意什么呢?
在△ABC中,AB>AC,∠BAC的平分線與邊BC的中垂線相交于點O,OE垂直AB于點E,那么三條線段AB、AC、BE有何等量關系?請你寫出來并加以證明.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

辨析題:在△ABC中,已知AB>AC,求證:AB=AC.
證明:如圖,作∠BAC的平分線與邊BC的中垂線交于點O,
則OB=OC,再作OE垂直AB于E,OF垂直AC于F,則OE=OF,
∴Rt△BOE≌Rt△COF,
∴BE=CF,①
在Rt△AOE和Rt△AOF中,OE=OF,AO=AO,
∴Rt△AOE≌Rt△AOF
∴AE=AF,②
由①、②得,AB=AC.
上述畫圖與證明過程中,哪里出錯了呢?
這說明我們今后在解題時又要注意什么呢?
在△ABC中,AB>AC,∠BAC的平分線與邊BC的中垂線相交于點O,OE垂直AB于點E,那么三條線段AB、AC、BE有何等量關系?請你寫出來并加以證明.

查看答案和解析>>

同步練習冊答案