【題目】如圖,正方形ABCD的對稱中心在坐標(biāo)原點,ABx軸,AD、BC分別與x軸交于E、F,連接BE、DF,若正方形ABCD有兩個頂點在雙曲線y=上,實數(shù)a滿足a3a=1,則四邊形DEBF的面積是_____

【答案】6210

【解析】

根據(jù)乘方,可得a的值,根據(jù)正方形的對稱中心在坐標(biāo)原點,可得B點的橫坐標(biāo)等于縱坐標(biāo),根據(jù)平行四邊形的面積公式,可得答案.

a3a=1a=1、a=﹣1a=3.

①當(dāng)a=1時,函數(shù)解析式為y=,由正方形ABCD的對稱中心在坐標(biāo)原點,得

B點的橫坐標(biāo)等于縱坐標(biāo),x=y=,

四邊形DEBF的面積是2xy=2×=6;

②當(dāng)a=﹣1時,函數(shù)解析式為y=,由正方形ABCD的對稱中心在坐標(biāo)原點,得

B點的橫坐標(biāo)等于縱坐標(biāo),x=y=1,

四邊形DEBF的面積是2xy=2×1×1=2;

③當(dāng)a=3時,函數(shù)解析式為y=,由正方形ABCD的對稱中心在坐標(biāo)原點,得

B點的橫坐標(biāo)等于縱坐標(biāo),x=y=,

四邊形DEBF的面積是2xy=2×=10,

故答案為:6210.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AE上一動點(不與點AE重合),在AE同側(cè)分別作正三角形ABC和正三角形CDE,ADBE交于點OADBC交于點P,BECD交于點Q,連接PQ.以下五個結(jié)論:


AD=BE;
PQAE;
EQ=DP;
④∠AOB=60°;
⑤當(dāng)CAE中點時,SBPQSCDE=13.其中恒成立的結(jié)論有( 。

A.①②④B.①②③④C.①②③⑤D.①②④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(2k-1)x+k2+1=0,如果方程的兩根之和等于兩根之積,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c軸相交于A、B兩點,與軸相交于點C,OA=1,OC=3,連接BC.

(1)求b的值;

(2)點D是直線BC上方拋物線一動點(點B、C除外),當(dāng)BCD的面積取得最大值時,在軸上是否存在一點P,使得|PB﹣PD|最大,若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

(3)在(2)的條件下,若在平面上存在點Q,使得以點B、C、D、Q為頂點的四邊形為平行四邊形,請直接寫出點Q坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用一條長為18cm的細(xì)繩圍成一個等腰三角形.

(1)如果腰長是底邊長的2倍,求三角形各邊的長;

(2)能圍成有一邊的長是4cm的等腰三角形嗎?若能,求出其他兩邊的長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線AMAN,AB平分∠MAN,過點BBCBAAN于點C;動點ED同時從A點出發(fā),其中動點E2cm/s的速度沿射線AN方向運動,動點D1cm/s的速度運動;已知AC6cm,設(shè)動點D,E的運動時間為t

1)當(dāng)點D在射線AM上運動時滿足SADBSBEC21,試求點D,E的運動時間t的值;

2)當(dāng)動點D在直線AM上運動,E在射線AN運動過程中,是否存在某個時間t,使得△ADB與△BEC全等?若存在,請求出時間t的值;若不存在,請說出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點為平面內(nèi)一點,

1)如圖1,直接寫出之間的數(shù)量關(guān)系   ;

2)如圖2,過點于點,求證:

3)如圖3,在(2)問的條件下,點、上,連接、,平分,平分,若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABAC,CDBE分別是ABC的角平分線,AGBC,AGBG,下列結(jié)論:①∠BAG=2ABF;②BA平分∠CBG;③∠ABG=ACB;④∠CFB=135°.其中正確的結(jié)論是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.

(1)求證:△AEC≌△BED;

(2)若∠1=40°,求∠BDE的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案