【題目】隨著幾何部分的學習,小鵬對幾何產生了濃厚的興趣,他最喜歡利用手中的工具畫圖了如圖,作一個,以O為圓心任意長為半徑畫弧分別交OA,OB于點C和點D,將一副三角板如圖所示擺放,兩個直角三角板的直角頂點分別落在點C和點D,直角邊中分別有一邊與角的兩邊重合,另兩條直角邊相交于點P,連接小鵬通過觀察和推理,得出結論:OP平分

你同意小鵬的觀點嗎?如果你同意小鵬的觀點,試結合題意寫出已知和求證,并證明.

已知:中,________________________,____________

求證:OP平分

【答案】詳見解析.

【解析】

由尺規(guī)作圖和直角三角板的擺放可補全已知部分,再判定Rt△PCO≌Rt△PDO,根據(jù)全等三角形的性質即可證得結論

已知:∠AOB中,OC=OD,PC⊥OA,PD⊥OB.

求證:OP平分∠AOB.

證明:∵PC⊥OA,PD⊥OB,

∴∠PCO=∠PDO=90°,

Rt△PCORt△PDO中,

∴Rt△PCO≌Rt△PDO(HL),

∴∠COP=∠POD,

∴OP平分∠AOB.

故答案為:OC,OD,PC,OA,PD,OB.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某市為了節(jié)約用水,采用分段收費標準.若某戶居民每月應交水費y()與用水量x()之間關系的圖象如圖,根據(jù)圖象回答:

(1)該市自來水收費時,若使用不足5噸,則每噸收費多少元?超過5噸部分每噸收費多少元?

(2)若某戶居民每月用水3.5噸,應交水費多少元?若某月交水費17元,該戶居民用水多少噸?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】"元旦"期間,幾名學生隨同家長一起到某公園游玩,下面是購買門票時,小明與他爸爸的對話(如圖),試根據(jù)圖中的信息,解答下列問題:

(1)小明他們一共去了幾名成人,幾名學生?

(2)請你幫助小明算一算,用哪種方式購票更省錢?并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(1)-3+5;

(2)-3-2;

(3);

(4) ;

(5);

(6).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果∠α和∠β互補,且∠α>β,則下列表示∠β的余角的式子中:①90°﹣β;②∠α﹣90°α+β);α﹣β).正確的有( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,AB=AC,以BC為邊作等邊△BDC,連接AD.

(1)如圖1,直接寫出∠ADB的度數(shù)   ;

(2)如圖2,作∠ABM=60°BM上截取BE,使BE=BA,連接CE,判斷CEAD的數(shù)量關系,請補全圖形,并加以證明;

(3)在(2)的條件下,連接DE,AE.若∠DEC=60°,DE=2,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側面和2個正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)

A方法:剪6個側面; B方法:剪4個側面和5個底面。

現(xiàn)有19張硬紙板,裁剪時張用A方法,其余用B方法。

1)用的代數(shù)式分別表示裁剪出的側面和底面的個數(shù);

2)若裁剪出的側面和底面恰好全部用完,問能做多少個盒子?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,ABC的三個頂點坐標分別為A(0,4),B(3,4),C(4,﹣1).

(1)試在平面直角坐標系中,畫出ABC;

(2)直接寫出ABC的面積_________

(3)若A1B1C1ABC關于x軸對稱,直接寫出A1、B1、C1的坐標___________________________________

(4)在x軸上找到一點P,使點P到點A、B兩點的距離和最。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小組在用頻率估計概率的試驗中,統(tǒng)計了某種結果出現(xiàn)的頻率,繪制了如圖所示的折線圖,那么符合這一結果的試驗最有可能的是(  )

A. 在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機摸出一個球是白球

B. 從一副撲克牌中任意抽取一張,這張牌是紅色的

C. 擲一枚質地均勻的硬幣,落地時結果是正面朝上

D. 擲一個質地均勻的正六面體骰子,落地時面朝上的點數(shù)是6

查看答案和解析>>

同步練習冊答案