(2010•拱墅區(qū)二模)一個圓柱體形零件,削去了占底面圓的四分之一部分的柱體(如圖),現(xiàn)已畫出了主視圖與俯視圖.

(1)請只用直尺和圓規(guī),將此零件的左視圖畫在規(guī)定的位置(不必寫作法,只須保留作圖痕跡);
(2)若此零件底面圓的半徑r=2cm,高h(yuǎn)=3cm,求此零件的表面積.
【答案】分析:(1)由削去了占底面圓的四分之一部分的柱體易得主視圖和左視圖相同,可先畫一條線段等于主視圖中大長方形的長,然后分別做兩個端點的垂線及線段的垂直平分線,在兩端點的垂線上分別截取主視圖的高連接即可得到幾何體的左視圖;
(2)此零件的表面積=兩個底面積+側(cè)面積,把相關(guān)數(shù)值代入即可求解.
解答:(1)左視圖與主視圖形狀相同,有作垂線(直角)的痕跡(作法不唯一)(4分)

(2)兩個底面積:2πr2×=6π(cm2);(1分)
側(cè)面積:(2πr×+2r)×3=(3π+4)×3=9π+12(cm2);(2分)
表面積:15π+12(cm2)(1分).
點評:解決本題的關(guān)鍵是得到零件全面積的等量關(guān)系,注意側(cè)面積的展開圖應(yīng)為一個長方形,長方形的長為四分之三圓的周長+半徑長.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市拱墅區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•拱墅區(qū)二模)如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點M(-3,-1),且知點P(-1,-3)是反比例函數(shù)圖象上的點:
(1)分別求出正比例函數(shù)和反比例函數(shù)的解析式;
(2)作PA⊥x軸,垂足為A,當(dāng)點Q在直線MO上運動時,作QB⊥y軸,垂足為B,問:直線MO上是否存在這樣的點Q,使得△OBQ與△OAP面積相等?如果存在,請求出點Q的坐標(biāo),如果不存在,請說明理由;
(3)當(dāng)點Q在第一象限中的雙曲線上運動時,作以O(shè)P、OQ為鄰邊的?OPCQ,求?OPCQ周長的最小值以及取得最小值時點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市拱墅區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:填空題

(2010•拱墅區(qū)二模)二次函數(shù)y=-x2+2x+3的圖象與x軸交于B、C兩點,點D是線段BC的中點,在x軸上方的A點為拋物線上的動點,連接AD,設(shè)AD=m,當(dāng)∠BAC為銳角時,m的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市拱墅區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•拱墅區(qū)二模)如圖,已知矩形ABCD在直線l的上方,BC在直線l上,AB=a,AD=b(a、b為常數(shù)),E是BC上的一動點(不含端點B、C),以AE為邊在直線l的上方作矩形AEFG,使頂點G恰好落在射線CD上.
(1)求證:△ADG∽△ABE;
(2)過F作FH⊥l,求證:△ADG≌△EHF;
(3)連接FC,判斷當(dāng)點E由B向C運動時,∠FCH的大小是否總保持不變?若∠FCH的大小不變,請用含a、b的代數(shù)式表示tan∠FCH的值;若∠FCH的大小發(fā)生改變,請舉例說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市拱墅區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•拱墅區(qū)二模)小張同學(xué)所在的社會實踐小組利用假期,隨機調(diào)查了一個居民小區(qū)若干名居民的年齡,將調(diào)查數(shù)據(jù)繪制成不完全的扇形統(tǒng)計圖和條形統(tǒng)計圖(如圖),請根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)他們共調(diào)查了______名居民的年齡;
(2)扇形統(tǒng)計圖中的a=______%;
(3)補全條形統(tǒng)計圖,并注明人數(shù);
(4)若在該轄區(qū)中隨機抽取一人,那么這個人年齡是60歲及以上的概率為______%.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市拱墅區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•拱墅區(qū)二模)如圖,在Rt△ABC中,已知∠ACB=90°,O為BC邊上一點,以O(shè)為圓心,OB為半徑作半圓與AB邊交于點D,連接CD,若CD恰好是⊙O的切線:
(1)求證:△CAD是等腰三角形;
(2)若AC=3,BC=5,求⊙O的半徑r.

查看答案和解析>>

同步練習(xí)冊答案