11、如圖,已知:⊙O1與⊙O2是等圓,它們相交于A、B兩點,O2在⊙O1上,AC是⊙O2的直徑,直線CB交⊙O1于D,E為AB延長線上一點,連接DE.
(1)請你連接AD,證明:AD是⊙O1的直徑;
(2)若∠E=60°,求證:DE是⊙O1的切線.
分析:(1)根據(jù)直徑對的圓周角是直角得到∠ABC是直角,則∠ABD也是直角,故弦AD是直徑.
(2)根據(jù)已知可求得∠ADE=90°又AD是直徑,從而得到DE是⊙O1的切線.
解答:證明:(1)連接AD,
∵AC是⊙O2的直徑,AB⊥DC,
∴∠ABD=90°,
∴AD是⊙O1的直徑.

(2)證法一:∵AD是⊙O1的直徑,
∴O1為AD中點
.連接O1O2
∵點O2在⊙O1上,⊙O1與⊙O2的半徑相等,
∴O1O2=AO1=AO2,
∴△AO1O2是等邊三角形,
∴∠AO1O2=60°.
∵O1為AD中點,O2為AC中點,
∴O1O2∥DC,
∴∠ADB=∠AO1O2=60°.
∵AB⊥DC,∠E=60,
∴∠BDE=30,
則∠ADE=∠ADB+∠BDE=60°+30°=90°,
∴DE是⊙O1的切線.
證法二:連接O1O2;
∵點O2在⊙O1上,O1與O2的半徑相等,
∴點O1在⊙O2,
∴O1O2=AO1=AO2
∴∠O1AO2=60°.
∵AB是公共弦,
∴AB⊥O1O2
∴∠O1AB=30°.
∵∠E=60°,
∴∠ADE=180°-(60°+30°)=90°.
∴DE是⊙O1的切線.
點評:本題利用了直徑對的圓周角是直徑,等邊三角形的判定和性質(zhì),三角形中位線的性質(zhì),直角三角形的性質(zhì),切線的判定求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,已知圓O1與圓O2相交于A,B兩點,直線O1A交圓O1于C,交圓O2于D,連接CB精英家教網(wǎng)并延長交圓O2于E,AF切圓O1于A,交CE于F.
(1)求證:
CA
CD
=
AF
DE

(2)若
CA
AD
=
3
2
,圓O1的半徑為2,且∠C=30°,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知:⊙O1與⊙O2外切于點O,以直線O1O2為x軸,點O為坐標原點,建立直角坐標系,直線AB精英家教網(wǎng)切⊙O1于點B,切⊙O2于點A,交y軸于點C(0,2),交x軸于點M.BO的延長線交⊙O2于點D,且OB:OD=1:3.
(1)求⊙O2半徑的長;
(2)求線段AB的解析式;
(3)在直線AB上是否存在點P,使△MO2P與△MOB相似?若存在,求出點P的坐標與此時k=
S△MO2P
S
 
△MOB
的值,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知:⊙O1與⊙O2外切于點O,以直線O1O2為x軸,點O為坐標原點,建立直角坐標系,直線AB切⊙O1于點B,切⊙O2于點A,交y軸于點C(0,2),交x軸于點M.BO的延長線交⊙O2于點D,且OB:OD=1:3.
(1)求⊙O2半徑的長;
(2)求線段AB的解析式;
(3)在直線AB上是否存在點P,使△MO2P與△MOB相似?若存在,求出點P的坐標與此時k=數(shù)學公式的值,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年高一直升考試數(shù)學模擬試卷(二)(解析版) 題型:解答題

如圖,已知:⊙O1與⊙O2外切于點O,以直線O1O2為x軸,點O為坐標原點,建立直角坐標系,直線AB切⊙O1于點B,切⊙O2于點A,交y軸于點C(0,2),交x軸于點M.BO的延長線交⊙O2于點D,且OB:OD=1:3.
(1)求⊙O2半徑的長;
(2)求線段AB的解析式;
(3)在直線AB上是否存在點P,使△MO2P與△MOB相似?若存在,求出點P的坐標與此時k=的值,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案