(2005•太原)如圖,直線y=x+2與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,⊙C是△ABO的外接圓(O為坐標(biāo)原點(diǎn)),∠BAO的平分線交⊙C于點(diǎn)D,連接BD、OD.
(1)求證:BD=AO;
(2)在坐標(biāo)軸上求點(diǎn)E,使得△ODE與△OAB相似;
(3)設(shè)點(diǎn)A′在OAB上由O向B移動,但不與點(diǎn)O、B重合,記△OA′B的內(nèi)心為I,點(diǎn)I隨點(diǎn)A′的移動所經(jīng)過的路程為l,求l的取值范圍.

【答案】分析:(1)利用直線y=x+2與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,求出A(0,2),B(-2,0),利用勾股定理求出三角形ABO的邊,由邊的長度,可求出∠ABO=30°,∠BAO=60°,利用∠BAO的平分線交⊙C于點(diǎn)D,可求出∠ABO=30°=∠BAD,所以BD=AO;
(2)分兩種情況:①當(dāng)∠ODE=90°時(shí),點(diǎn)E的坐標(biāo)為E1(0,-4),E2(-,0);
②當(dāng)∠OED=90°時(shí),E3(0,-1),E4(-,0);
(3)可設(shè)I為△OA'B的內(nèi)心連接BI,利用動點(diǎn)I到定點(diǎn)D的距離為2,即點(diǎn)I的軌跡是以點(diǎn)D為圓心,2為半徑的弧OIB(不含點(diǎn)O、B),可求出弧OIB的長為,進(jìn)而求出l的取值范圍.
解答:(1)證明:∵直線y=x+2與y軸交于點(diǎn)A,與x軸交于點(diǎn)B
∴A(0,2),B(-2,0),
∴OA=2,0B=2,AB=4,
∴∠ABO=30°,∠BAO=60°,
∵∠BAO的平分線交⊙C于點(diǎn)D,
∴∠ABO=30°=∠BAD,
∴BD=AO;

(2)解:
①當(dāng)∠ODE=90°時(shí),點(diǎn)E的坐標(biāo)為E1(0,-4),E2(-,0);
②當(dāng)∠OED=90°時(shí),E3(0,-1),E4(-,0);
∴符合點(diǎn)E的坐標(biāo)有四個(gè);

(3)解:
如圖,設(shè)I為△OA'B的內(nèi)心連接BI,連接BH,
∴∠A′BI=∠IBO,
∵BD=OD,∴∠BA′D=∠DBO,
∴∠A′BI+∠BA′D=∠IBO+∠OBD,即∠BID=∠IBD,
∴ID=BD,
∵BD=OA=2,∴ID=2,
∴動點(diǎn)I到定點(diǎn)D的距離為2,即點(diǎn)I的軌跡是以點(diǎn)D為圓心,2為半徑的弧OIB(不含點(diǎn)O、B),
弧OIB的長為,
則l的取值范圍是0<l<
點(diǎn)評:本題需仔細(xì)分析題意,結(jié)合圖形,利用勾股定理和圓的性質(zhì)即可解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年山西省太原市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:填空題

(2005•太原)如圖,⊙O2與半圓Ol內(nèi)切于點(diǎn)C,與半圓的直徑AB切于點(diǎn)D,若AB=6,⊙O2的半徑為1,則∠ABC的度數(shù)為    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年山西省太原市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:填空題

(2005•太原)如圖是比例尺為1:200的鉛球場地的示意圖,鉛球投擲圈的直徑為2.135m,體育課上,某生推出的鉛球落在投擲區(qū)的點(diǎn)A處,他的鉛球成績約為    m(精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年山西省太原市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2005•太原)如圖,在正方形ABCD中,點(diǎn)E、F分別在邊BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面積等于( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年山西省太原市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2005•太原)如圖,兩條直線a、b被第三條直線c所截,如果a∥b,∠1=50°,那么∠2的度數(shù)為( )

A.130°
B.100°
C.80°
D.40°

查看答案和解析>>

同步練習(xí)冊答案