【題目】將邊長(zhǎng)OA=8,OC=10的矩形OABC放在平面直角坐標(biāo)系中,頂點(diǎn)O為原點(diǎn),頂點(diǎn)C、A分別在軸和y軸上.在OA邊上選取適當(dāng)?shù)狞c(diǎn)E,連接CE,將△EOC沿CE折疊。
(1)如圖①,當(dāng)點(diǎn)O落在AB邊上的點(diǎn)D處時(shí),點(diǎn)E的坐標(biāo)為 ;
(2)如圖②,當(dāng)點(diǎn)O落在矩形OABC內(nèi)部的點(diǎn)D處時(shí),過(guò)點(diǎn)E作EG∥軸交CD于點(diǎn)H,交BC于點(diǎn)G.求證:EH=CH;
(3)在(2)的條件下,設(shè)H(m,n),寫(xiě)出m與n之間的關(guān)系式 ;
(4)如圖③,將矩形OABC變?yōu)檎叫危?/span>OC=10,當(dāng)點(diǎn)E為AO中點(diǎn)時(shí),點(diǎn)O落在正方形OABC內(nèi)部的點(diǎn)D處,延長(zhǎng)CD交AB于點(diǎn)T,求此時(shí)AT的長(zhǎng)度。
【答案】(1)(0,5);(2)∠1=∠2.∵EG∥x軸,∴∠1=∠3. ∴∠2=∠3.∴EH=CH.
(3)(4).
【解析】試題分析:(1)根據(jù)翻折變換的性質(zhì)以及勾股定理得出BD的長(zhǎng),進(jìn)而得出AE,EO的長(zhǎng)即可得出答案;
(2)利用平行線的性質(zhì)以及等角對(duì)等邊得出答案即可;
(3)首先得出Rt△ATE≌Rt△DTE進(jìn)而得出AT=DT.設(shè)AT=x,則BT=10-x,TC=10+x,在Rt△BTC中,BT2+BC2=TC2,求出即可.
試題解析:(1)∵將邊長(zhǎng)OA=8,OC=10的矩形OABC放在平面直角坐標(biāo)系中,點(diǎn)O落在AB邊上的點(diǎn)D處,
∴OC=DC=10,
∵BC=8,
∴BD==6,
∴AD=10-6=4,
設(shè)AE=x,則EO=8-x,
∴x2+42=(8-x)2,
解得:x=3,
∴AE=3,
則EO=8-3=5,
∴點(diǎn)E的坐標(biāo)為:(0,5),
故答案為:(0,5);
(2)∵EG∥x軸,∴∠OCE=∠CEH,
由折疊可知∠OCE=∠ECH,
∴∠CEH=∠ECH,
∴EH=CH;
(3)連接ET,
由題意可知,ED=EO,ED⊥TC,DC=OC=10,
∵E是AO中點(diǎn),∴AE=EO,
∴AE=ED,
在Rt△ATE和Rt△DTE中,
,
∴Rt△ATE≌Rt△DTE(HL),
∴AT=DT,
設(shè),則,,
在Rt△BTC中,,
即,
解得,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某路公交車從起點(diǎn)經(jīng)過(guò)A、B、C、D站到達(dá)終點(diǎn),一路上下乘客如下表所示。(用正數(shù)表示上車的人數(shù),負(fù)數(shù)表示下車的人數(shù))
起點(diǎn) | A | B | C | D | 終點(diǎn) | |
上車的人數(shù) | 18 | 15 | 12 | 7 | 5 | 0 |
下車的人數(shù) | 0 | -3 | -4 | -10 | -11 |
(1)到終點(diǎn)下車還有_________ 人;
(2)車行駛在那兩站之間車上的乘客最多?_______站和________站;
(3)若每人乘坐一站需買票1元,問(wèn)該車出車一次能收入多少錢?寫(xiě)出算式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)你把紙對(duì)折一次時(shí),可以得到2層,對(duì)折2次時(shí)可以得到4層,對(duì)折3次時(shí)可以得到8層,照這樣折下去:
(1)你能發(fā)現(xiàn)層數(shù)與折紙次數(shù)的關(guān)系嗎?
(2)計(jì)算對(duì)折5次時(shí)的層數(shù);
(3)如果每層紙的厚度是0.05毫米,求對(duì)折10次之后紙的總厚度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a≠0,在同一直角坐標(biāo)系中,函數(shù)y=ax與y=ax2的圖象有可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的對(duì)稱軸是直線x=1,且經(jīng)過(guò)點(diǎn)(0,2).有下列結(jié)論:
①ac>0;②b2﹣4ac>0;③a+c<2﹣b;④a<﹣;⑤x=﹣5和x=7時(shí)函數(shù)值相等.
其中正確的結(jié)論有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,矩形OABC的頂點(diǎn)B坐標(biāo)為(12,5),點(diǎn)D在 CB邊上從點(diǎn)C運(yùn)動(dòng)到點(diǎn)B,以AD為邊作正方形ADEF,連BE、BF,在點(diǎn)D運(yùn)動(dòng)過(guò)程中,請(qǐng)?zhí)骄恳韵聠?wèn)題:
(1)△ABF的面積是否改變,如果不變,求出該定值;如果改變,請(qǐng)說(shuō)明理由;
(2)若△BEF為等腰三角形,求此時(shí)正方形ADEF的邊長(zhǎng);
(3)設(shè)E(x,y),直接寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】類似乘方,我們把求若干個(gè)相同的不為零的有理數(shù)的除法運(yùn)算叫做“除方”如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,并將2÷2÷2記作2③,讀作“2的圈3次方”;(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)記作(﹣3)④,讀作“﹣3的圈4次方”.
(1)直接寫(xiě)出結(jié)果:2③= ,(﹣3)④= ,()⑤= ,
(2)計(jì)算:24÷23+(﹣8)×2③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在有些情況下,不需要計(jì)算出結(jié)果也能把絕對(duì)值符號(hào)去掉.例如:|6+7|=6+7;|6﹣7|=7﹣6;|7﹣6|=7﹣6;|﹣6﹣7|=6+7
(1)根據(jù)上面的規(guī)律,把下列各式寫(xiě)成去掉絕對(duì)值符號(hào)的形式:
①|7﹣21|= ;②|﹣﹣0.8|= ;③|﹣|= :
(2)數(shù)a在數(shù)軸上的位置如圖所示,則|a﹣2.5|= .
A.a﹣2.5
B.2.5﹣a
C.a+2.5
D.﹣a﹣2.5
(3)利用上述介紹的方法計(jì)算或化簡(jiǎn):
①|﹣|+|﹣|﹣|﹣|+;
②|﹣|+|﹣|﹣|﹣|+2(),其中a>2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條“折線數(shù)軸”.圖中點(diǎn)A表示﹣10,點(diǎn)B表示10,點(diǎn)C表示18,我們稱點(diǎn)A和點(diǎn)C在數(shù)軸上相距28個(gè)長(zhǎng)度單位,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運(yùn)動(dòng),從點(diǎn)O運(yùn)動(dòng)到點(diǎn)B期間速度變?yōu)樵瓉?lái)的一半;點(diǎn)P從點(diǎn)A出發(fā)的同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),以1單位/秒的速度沿著“折線數(shù)軸”的負(fù)方向運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)B點(diǎn)時(shí),點(diǎn)P、Q均停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒.問(wèn):
(1)用含t的代數(shù)式表示動(dòng)點(diǎn)P在運(yùn)動(dòng)過(guò)程中距O點(diǎn)的距離;
(2)P、Q兩點(diǎn)相遇時(shí),求出相遇時(shí)間及相遇點(diǎn)M所對(duì)應(yīng)的數(shù)是多少?
(3)是否存在P、O兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度與Q、B兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度相等時(shí)?若存在,請(qǐng)直接寫(xiě)出t的取值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com