如圖,△OPQ的邊長為2的等邊三角形,若反比例函數(shù)的圖象過點P,則它的關(guān)系式是______.
過點P作PA⊥OQ于A,
∵△OPQ的邊長為2的等邊三角形,
∴OP=2,OA=1,
∴PA=
OP2-OA2
=
3

∴P點坐標(biāo)為(1,
3

設(shè)y=
k
x
,把點P代入得,k=
3
,
y=
3
x
(x>0).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,反比例函數(shù)y=
k
x
在第一象限內(nèi)的圖象上有點A、B,已知點A(3m,m)、點B(n,n+1)(其中m>0,n>0),OA=2
10

(1)求A、B點的坐標(biāo)及反比例函數(shù)解析式;
(2)如果M為x軸上一點,N為y軸上一點,以A、B、M、N為頂點的四邊形是平行四邊形,請直接寫出符合條件的M、N點的坐標(biāo),并畫出相應(yīng)的平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=x與反比例函數(shù)y=
k
x
(x>0)的圖象交于點A,AB⊥y軸,垂足為B,點C在射線BA上(端點除外),點E在x軸上,且∠OCE=90°,CH⊥x軸,垂足為H,并與反比例函數(shù)y=
k
x
圖象交于點G.
(1)若點B的坐標(biāo)為(0,4),求k的值;
(2)在(1)的條件下,求證:HG=HE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知雙曲線y1=
k
x
(k>0)
與直線y2=k'x交于A,B兩點,點A在第一象限.試解答下列問題:
(1)若點A的坐標(biāo)為(4,2),則點B的坐標(biāo)為______;當(dāng)x滿足:______時,y1>y2
(2)過原點O作另一條直線l,交雙曲線y=
k
x
(k>0)
于P,Q兩點,點P在第一象限,如圖2所示.
①四邊形APBQ一定是______;
②若點A的坐標(biāo)為(3,1),點P的橫坐標(biāo)為1,求四邊形APBQ的面積;
③設(shè)點A、P的橫坐標(biāo)分別為m、n,四邊形APBQ可能是矩形嗎?若可能,求m,n應(yīng)滿足的條件;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,反比例函數(shù)y=
k
x
的圖象經(jīng)過點P,則k=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米.
(1)寫出用高表示長的函數(shù)式;
(2)寫出自變量x的取值范圍;
(3)當(dāng)x=3厘米時,求y的值;
(4)畫出函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,半圓O的直徑AD=12cm,AB,BC,CD分別與半圓O切于點A,E,D.
(1)設(shè)AB=x,CD=y,求y與x之間的函數(shù)關(guān)系式;
(2)如果CD=6,判斷四邊形ABCD的形狀;
(3)如果AB=4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖為反比例函數(shù)y=
k
x
的圖象,則k等于( 。
A.
5
2
B.
2
5
C.10D.-10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

三角形的面積為12cm2,這時底邊上的高ycm底邊xcm之間的函數(shù)關(guān)系用圖象表示大致是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案