(本題滿(mǎn)分12分)在中,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)角得交于點(diǎn),分別交于兩點(diǎn).
1.(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過(guò)程中,線(xiàn)段與有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
2.(2)如圖2,當(dāng)時(shí),試判斷四邊形的形狀,并說(shuō)明理由;
3.(3)在(2)的情況下,求的長(zhǎng).
1.(1)
證明:(證法一)
由旋轉(zhuǎn)可知,
∴
∴又
∴即
(證法二)
由旋轉(zhuǎn)可知,而
∴
∴∴
即-
2.(2)四邊形是菱形.
證明:同理
∴四邊形是平行四邊形.
又∴四邊形是菱形
3.(3)過(guò)點(diǎn)作于點(diǎn),則
在中,
……(10分)
由(2)知四邊形是菱形,
∴
∴
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分12分)在平面直角坐標(biāo)系中,一次函數(shù)的圖象與坐標(biāo)軸圍成的三角形,叫做此一次函數(shù)的坐標(biāo)三角形.例如,圖中的一次函數(shù)的圖象與x,y軸分別交于點(diǎn)A,B,則△OAB為此函數(shù)的坐標(biāo)三角形.
(1)求函數(shù)y=x+3的坐標(biāo)三角形的三條邊長(zhǎng);
(2)若函數(shù)y=x+b(b為常數(shù))的坐標(biāo)三角形周長(zhǎng)為16,求此三角形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分12分)在平面直角坐標(biāo)系xOy中,邊長(zhǎng)為a(a為大于0的常數(shù))的正方形ABCD的對(duì)角線(xiàn)AC、BD相交于點(diǎn)P,頂點(diǎn)A在x軸正半軸上運(yùn)動(dòng),頂點(diǎn)B在y軸正半軸上運(yùn)動(dòng)(x軸的正半軸、y軸的正半軸都不包含原點(diǎn)O),頂點(diǎn)C、D都在第一象限。
(1)當(dāng)∠BAO=45°時(shí),求點(diǎn)P的坐標(biāo);
(2)求證:無(wú)論點(diǎn)A在x軸正半軸上、點(diǎn)B在y軸正半軸上怎樣運(yùn)動(dòng),點(diǎn)P都在∠AOB的平分線(xiàn)上;
(3)設(shè)點(diǎn)P到x軸的距離為h,試確定h的取值范圍,并說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分12分)在平面直角坐標(biāo)系中,一次函數(shù)的圖象與坐標(biāo)軸圍成的三角形,叫做此一次函數(shù)的坐標(biāo)三角形.例如,圖中的一次函數(shù)的圖象與x,y軸分別交于點(diǎn)A,B,則△OAB為此函數(shù)的坐標(biāo)三角形.
(1)求函數(shù)y=x+3的坐標(biāo)三角形的三條邊長(zhǎng);
(2)若函數(shù)y=x+b(b為常數(shù))的坐標(biāo)三角形周長(zhǎng)為16,求此三角形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011-2012年江蘇省揚(yáng)州市九年級(jí)第一學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本題滿(mǎn)分12分)在直角坐標(biāo)系中,拋物線(xiàn)經(jīng)過(guò)點(diǎn)(0,10)
和點(diǎn)(4,2).
1.(1) 求這條拋物線(xiàn)的函數(shù)關(guān)系式.
2.(2)如圖,在邊長(zhǎng)一定的矩形ABCD中,CD=1,點(diǎn)C在y軸右側(cè)沿拋物線(xiàn) 滑動(dòng),在滑動(dòng)過(guò)程中CD∥x軸,AB在CD的下方.當(dāng)點(diǎn)D在y軸上時(shí),AB正好落在x軸上.
①求邊BC的長(zhǎng).
②當(dāng)矩形ABCD在滑動(dòng)過(guò)程中被x軸分成兩部分的面
積比為1:4時(shí),求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:江蘇省蘇州市高新區(qū)2013屆七年級(jí)下學(xué)期期末考試數(shù)學(xué)試題 題型:解答題
(本題滿(mǎn)分12分)在平面直角坐標(biāo)系中,已知二次函數(shù)的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),AB=4,與y軸交于點(diǎn)C,且過(guò)點(diǎn)(2,3).
(1)求此二次函數(shù)的表達(dá)式;
(2)若拋物線(xiàn)的頂點(diǎn)為D,連接CD、CB,問(wèn)拋物線(xiàn)上是否存在點(diǎn)P,使得∠PBC+∠BDC=90°. 若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)K拋物線(xiàn)上C關(guān)于對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn),點(diǎn)G拋物線(xiàn)上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使A、K、F、G這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿(mǎn)足條件的F點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com