【題目】已知:如圖,在等腰三角形ABC中,120BAC180,ABACADBC于點(diǎn)D,以AC為邊作等邊三角形ACEACEABC在直線AC的異側(cè),直線BE交直線AD于點(diǎn)F,連接FCAE于點(diǎn)M

1)求EFC的度數(shù);

2)求證:FE+FA=FC

【答案】(1)(2)詳見解析

【解析】

1)根據(jù)等腰三角形的性質(zhì)得出∠1=∠2,由直線AD垂直平分BC,求出FBFC,根據(jù)等腰三角形的性質(zhì)得出∠3=∠4,然后求出ABAE,根據(jù)等腰三角形的性質(zhì)得出∠3=∠5,等量代換求出即可得到;

2)在FC上截取FN,使FNFE,連接EN,根據(jù)等邊三角形的判定得出EFN是等邊三角形,求出∠FEN60°,ENEF,再求出∠5=∠6,根據(jù)SAS推出EFA≌△ENC,根據(jù)全等得出FANC,即可證得結(jié)論.

解:(1)如圖1,∵,

,

,

∴直線垂直平分,

,

,

,即

∴在等邊三角形中,

,

,

,

∵在等邊三角形中,,

2)在上截取,使,連接,如圖2

,

是等邊三角形,

,,

為等邊三角形,

,,

,即,

中,

,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2﹣2x+m+1x軸交于A(x1 , 0)、B(x2 , 0)兩點(diǎn),且x1<0,x2>0,與y軸交于點(diǎn)C,頂點(diǎn)為P.(提示:若x1 , x2是一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)實(shí)根,則x1+x2=﹣ ,x1x2=

(1)m的取值范圍;

(2)OA=3OB,求拋物線的解析式;

(3)(2)中拋物線的對(duì)稱軸PD上,存在點(diǎn)Q使得△BQC的周長(zhǎng)最短,試求出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O 中,AB、CD是互相垂直的兩條直徑,點(diǎn)E上,CF⊥AE 于點(diǎn)F,若點(diǎn)F四等分弦AE,且AE=8,則⊙O 的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在矩形ABCD中,AD2AB,點(diǎn)E在直線AD上,連接BECE,若BEAD,則∠BEC的大小為_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,如果點(diǎn)、點(diǎn)為某個(gè)菱形的一組對(duì)角的頂點(diǎn),且點(diǎn)、在直線上,那么稱該菱形為點(diǎn)極好菱形.如圖為點(diǎn)、的“極好菱形”的一個(gè)示意圖.已知點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為

1)點(diǎn),,中,能夠成為點(diǎn)、的“極好菱形”的頂點(diǎn)的是   

2)若點(diǎn)、的“極好菱形”為正方形,求這個(gè)正方形另外兩個(gè)頂點(diǎn)的坐標(biāo).

3)如果四邊形是點(diǎn)、的“極好菱形”.

①當(dāng)點(diǎn)的坐標(biāo)為時(shí),求四邊形的面積.

②當(dāng)四邊形的面積為8,且與直線有公共點(diǎn)時(shí),直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,AO=10AB=8,沿直線CD折疊矩形OABC的一邊BC,使點(diǎn)B落在OA邊上的點(diǎn)E處.分別以OC,OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系,拋物線y=ax2+bx+c經(jīng)過O,DC三點(diǎn).

1)求AD的長(zhǎng)及拋物線的解析式;

2)一動(dòng)點(diǎn)P從點(diǎn)E出發(fā),沿EC以每秒2個(gè)單位長(zhǎng)的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CO以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),以P、Q、C為頂點(diǎn)的三角形與△ADE相似?

3)點(diǎn)N在拋物線對(duì)稱軸上,點(diǎn)M在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使以MN,C,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)M與點(diǎn)N的坐標(biāo)(不寫求解過程);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的周長(zhǎng)為36,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),BD=12,則△DOE的周長(zhǎng)為(  )

A. 15 B. 18 C. 21 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對(duì)稱軸為直線的拋物線與x軸相交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(-3,0)。

(1)求點(diǎn)B的坐標(biāo);

(2)已知,C為拋物線與y軸的交點(diǎn)。

若點(diǎn)P在拋物線上,且,求點(diǎn)P的坐標(biāo);

設(shè)點(diǎn)Q是線段AC上的動(dòng)點(diǎn),作QDx軸交拋物線于點(diǎn)D,求線段QD長(zhǎng)度的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春季流感爆發(fā),有一人患了流感,經(jīng)過兩輪傳染后共有人患了流感,

1)每輪傳染中平均一個(gè)人傳染了幾個(gè)人?

2)經(jīng)過三輪傳染后共有多少人患了流感?

查看答案和解析>>

同步練習(xí)冊(cè)答案