如圖,在平行四邊形ABCD中,∠BAC=90°,AB=AC,點M為BC邊上一點,BE⊥AM于E交AC于F,且BM=n•CM.

(1)如圖①,當n=3時,=______;
(2)如圖②,當n=2時,求證:AE=EM;
(3)如圖③,當n=______
【答案】分析:(1)如圖①,延長DC、AM,交于點N,先由平行線的性質(zhì)得出∠ACN=90°,利用余角的性質(zhì)得出∠ABF=∠CAN=90°-∠BAE,根據(jù)ASA證明△BAF≌△ACN,得到AF=CN,再由△BMA∽△CMN,即可求出==3;
(2)如圖②,延長DC、AM,交于點N,連接DF,先同(1)可證△BAF≌△ACN,得出AF=CN,同(1)可證△BMA∽△CMN,得出==2,則F為AC的中點,再根據(jù)平行四邊形的性質(zhì),得出B、F、D三點共線,然后由△ADE∽△MBE,得出==,即可證明AE=EM;
(3)如圖③,當n=+1時,=+1,由合比性質(zhì)得出==,由△ABC為等腰直角三角形得出=,則BM=AB,再根據(jù)等腰三角形三線合一的性質(zhì)即可證明E為AM的中點.
解答:(1)解:如圖①,延長DC、AM,交于點N.
∵平行四邊形ABCD中,AB∥CD,
∴∠ACN=180°-∠BAC=180°-90°=90°.
∵BE⊥AE,∠BAC=90°,
∴∠ABF=∠CAN=90°-∠BAE.
在△BAF與△ACN中,

∴△BAF≌△ACN(ASA),
∴AF=CN.
∵CN∥AB,
∴△BMA∽△CMN,
==3,
=3;

(2)證明:如圖②,延長DC、AM,交于點N,連接DF.
同(1)可證△BAF≌△ACN,
∴AF=CN.
同(1)可證△BMA∽△CMN,
==2,
∴AB=2CN,
∴AC=2AF,
∴F為AC的中點.
∵四邊形ABCD為平行四邊形,
∴B、F、D三點共線.
∵AD∥BM,
∴△ADE∽△MBE,
==,
∴AE=EM;

(3)解:如圖③,當n=+1時,E為AM的中點.理由如下:
∵n==+1,
==
∵△ABC中,∠BAC=90°,AB=AC,
=sin45°=,
∴BM=AB,
∵BE⊥AM,
∴E為AM的中點.
故答案為3;+1.
點評:本題考查了平行四邊形的性質(zhì),余角的性質(zhì),全等三角形、相似三角形的判定與性質(zhì),等腰三角形的性質(zhì),比例的性質(zhì)等知識,綜合性較強,難度較大.利用數(shù)形結(jié)合思想,正確作出輔助線是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點O,則圖中共有
9
個平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點E,∠ADC的平分線交AB于點F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點M是邊AD上一點,且DM:AD=1:3.點E、F分別從A、C同時出發(fā),以1厘米/秒的速度分別沿AB、CB向點B運動(當點F運動到點B時,點E隨之停止運動),EM、CD精英家教網(wǎng)的延長線交于點P,F(xiàn)P交AD于點Q.設(shè)運動時間為x秒,線段PC的長為y厘米.
(1)求y與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當x為何值時,PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
,AO=
3
OB=
5
,則下列結(jié)論中不正確的是( 。
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
4cm
4cm

查看答案和解析>>

同步練習(xí)冊答案