【題目】在直角梯形ABCD中,ABCD,∠BCD=90°,AB=AD=10cm,BC=8cm。點(diǎn)P從點(diǎn)A出發(fā),以每秒3cm的速度沿折線ABCD運(yùn)動,點(diǎn)Q從點(diǎn)D出發(fā),以每秒2cm的速度沿線段DC方向向點(diǎn)C運(yùn)動。已知動點(diǎn)P,Q同時出發(fā),當(dāng)點(diǎn)Q運(yùn)動到點(diǎn)C時,P,Q運(yùn)動停止,設(shè)運(yùn)動時間為t秒.

(1)求CD的長.

(2)t為何值時?四邊形PBQD為平行四邊形.

(3)在點(diǎn)P,點(diǎn)Q的運(yùn)動過程中,是否存在某一時刻,使得△BPQ的面積為20cm2?若存在,請求出所有滿足條件的t的值;若不存在,請說明理由.

【答案】(116;(2;(3.

【解析】試題分析:(1)過點(diǎn)AAM⊥CDM,四邊形AMCB是矩形,AM=BC,AD是已知的,根據(jù)勾股定理求出DM,CM=AB,所以CD就求出來了;(2)當(dāng)四邊形PBQD為平行四邊形時,點(diǎn)PAB上,點(diǎn)QDC上,用t表示出BP,DQ的長,滿足BP=DQ,求出t值,則BP,DQ即可求出,然后求出CQ,用勾股定理求出BQ,四邊形PBQD的周長就求出來了;(3DQC需要8秒,所以t的范圍是0≤t≤8,Q根據(jù)P所在線段不同,分三種情況討論,即當(dāng)點(diǎn)P在線段AB上時,即時,用t表示出BP的長,列三角形BPQ的面積等于20的方程求解;當(dāng)點(diǎn)P在線段BC上時,即時,用t表示出BP,CQ的長,建立三角形BPQ的面積等于20的方程求解;當(dāng)點(diǎn)P在線段CD上時,因?yàn)樗麄兿嘤龅臅r間是,若點(diǎn)PQ的右側(cè),即6≤t≤,用t表示出PQ的長,進(jìn)而列出面積方程式求解;若點(diǎn)PQ的左側(cè),即,用t表示出PQ的長,列出面積方程式求解.

試題解析:(1)過點(diǎn)AAM⊥CDM,根據(jù)勾股定理,AD=10AM=BC=8,∴DM==6,∴CD=16;(2)當(dāng)四邊形PBQD為平行四邊形時,點(diǎn)PAB上,點(diǎn)QDC上,如圖,由題知:AP=3t,BP=10﹣3t,DQ=2t,∴10﹣3t=2t,解得t=2,此時,BP=DQ=4,CQ=12,,四邊形PBQD的周長=2BP+BQ=;

3當(dāng)點(diǎn)P在線段AB上時,到B點(diǎn)時是秒,即時,如圖,BP=10﹣3t,BC=8,,

當(dāng)點(diǎn)P在線段BC上時,P到達(dá)C點(diǎn)t值時6秒,即時,如圖,BP=AB+BP-AB=3t﹣10,DQ=2t,CQ=16﹣2t,,化簡得:3t2﹣34t+100=0,△=﹣440,所以方程無實(shí)數(shù)解.此種情況不存在三角形BPQ的面積是20;

當(dāng)點(diǎn)P在線段CD上時,P點(diǎn)與Q點(diǎn)相遇時,可列2t+3t=10+8+16,t=,相遇時間是,若點(diǎn)PQ的右側(cè),即6≤t≤,則有PQ=34-2t+3t=34﹣5t,于是,解此方程得:

6,舍去,若點(diǎn)PQ的左側(cè),即,則有PQ=2t+3t-34=5t﹣34,可列方程:,解得:t=78綜合得出滿足條件的t值存在,其值分別為,t2=78

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,點(diǎn)M-3,-4)到x軸的距離為______________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】無論a取何值,下列方程總是x的一元二次方程的是( 。

A. (a2+1)x2=4 B. (a﹣2)x2=2 C. ax2+3x﹣2=0 D. 2x2+ax﹣1=2x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩地相距600千米,甲、乙兩車分別從兩地同時出發(fā)相向而行,甲比乙每小時多行10千米,4小時后兩車相遇,則乙的速度是( 。

A. 70千米/ B. 75千米/ C. 80千米/ D. 85千米/

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個多邊形的內(nèi)角和等于1080°,這個多邊形是_____邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程3x30的解是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)舉行中國夢校園好聲音歌手大賽,初、高中部根據(jù)初賽成績,各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽.兩個隊(duì)各選出的5名選手的決賽成績?nèi)鐖D4所示.

(1)根據(jù)圖示填寫下表

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

高中部

85

100

(2)結(jié)合兩隊(duì)成績的平均數(shù)和中位數(shù),分析哪個隊(duì)的決賽成績較好;

(3)計(jì)算兩隊(duì)決賽成績的方差并判斷哪一個代表隊(duì)選手成績較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班有40名同學(xué)去看演出,購買甲、乙兩種票共用去370元,其中,甲種票每張10元,乙種票每張8元,則購買了甲種票多少張,乙種票多少張?如果5位同學(xué)改買乙種票,全班共花多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如果a<0,b>0,那么ab_____0;

(2)如果a<0,b<0,那么ab____0;

查看答案和解析>>

同步練習(xí)冊答案