【題目】如圖1,AB是⊙O的直徑,P為⊙O外一點(diǎn),C,D為⊙O上兩點(diǎn),連結(jié)OP,CD,PD=PC.已知AB=8.
(1)若OP=5,PD=3,求證:PD是⊙O的切線;
(2)若PD、PC是⊙O的切線;
①求證:OP⊥CD;
②連結(jié)AD,BC,如圖2,若∠DAB=50°,∠CBA=70°,求弧CD的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)①證明解析;②弧CD的長(zhǎng)為.
【解析】
1)利用勾股定理的逆定理證明∠DOP=90°即可.
(2)①如圖1中,連接OC.由切線長(zhǎng)定理可知PD=PC,因?yàn)?/span>OD=OC,所以OP垂直平分線段CD,由此即可解決問(wèn)題.
②求出圓心角∠DOC的度數(shù)即可解決問(wèn)題.
(1)證明:∵直徑AB=8,
∴OD=4,
∵OP=5,PD=3,
∴OP2=PD2+OD2,
∴∠ODP=90°,
∴OD⊥DP,
∴PD是⊙O的切線.
(2)①證明:如圖1中,連接OC.
∵PD,PC是⊙O的切線,
∴PD=PC,
∵OD=OC,
∴OP垂直平分線段CD,
∴OP⊥CD.
②解:如圖2中,連接OD,OC.
∵OA=OD,OB=OC,
∴∠A=∠ODA=50°,∠B=∠OCB=70°,
∴∠AOD=180°﹣100°=80°,∠BOC=180°﹣140°=40°,
∴∠DOC=180°﹣80°﹣40°=60°,
∴弧CD的長(zhǎng)= = .
故答案為:(1)證明見(jiàn)解析;(2)①證明解析;②弧CD的長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,E,F(xiàn)為BD所在直線上的兩點(diǎn).若AE= ,∠EAF=135°,則以下結(jié)論正確的是( )
A. DE=1 B. tan∠AFO= C. AF= D. 四邊形AFCE的面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖拋物線y=ax2+2交x軸于點(diǎn)A(﹣2,0)、B,交y軸于點(diǎn)C;
(1)求拋物線的解析式;
(2)點(diǎn)P從點(diǎn)A出發(fā),以1個(gè)單位/秒的速度向終點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),以相同的速度沿y軸正方向向上運(yùn)動(dòng),運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),點(diǎn)Q也停止運(yùn)動(dòng),設(shè)△PQC的面積為S,求S與t間的函數(shù)關(guān)系式并直接寫(xiě)出t的取值范圍;
(3)在(2)的條件下,當(dāng)點(diǎn)P在線段OB上時(shí),設(shè)PQ交直線AC于點(diǎn)G,過(guò)P作PE⊥AC于點(diǎn)E,求EG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著地鐵和共享單車(chē)的發(fā)展,“地鐵+單車(chē)”已成為很多市民出行的選擇.李華從文化宮站出發(fā),先乘坐地鐵,準(zhǔn)備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車(chē)回家.設(shè)他出地鐵的站點(diǎn)與文化宮距離為x(單位:千米),乘坐地鐵的時(shí)間y1(單位:分鐘)是關(guān)于x的一次函數(shù),其關(guān)系如下表:
地鐵站 | A | B | C | D | E |
x(千米) | 8 | 9 | 10 | 11.5 | 13 |
y1(分鐘) | 18 | 20 | 22 | 25 | 28 |
(1)求y1關(guān)于x的函數(shù)表達(dá)式;
(2)李華騎單車(chē)的時(shí)間y2(單位:分鐘)也受x的影響,其關(guān)系可以用y2=x2-11x+78來(lái)描述,請(qǐng)問(wèn):李華應(yīng)選擇在哪一站出地鐵,才能使他從文化宮回到家所需的時(shí)間最短?并求出最短時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知,,點(diǎn)P為AB邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)E、F分別是CA,CB邊的中點(diǎn),過(guò)點(diǎn)P作于D,設(shè),圖中某條線段的長(zhǎng)為y,如果表示y與x的函數(shù)關(guān)系的大致圖象如圖2所示,那么這條線段可能是
A. PDB. PEC. PCD. PF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在研究“利用木板余料裁出最大面積的矩形”時(shí)發(fā)現(xiàn):如圖1,是一塊直角三角形形狀的木板余料,以為內(nèi)角裁一個(gè)矩形當(dāng)DE,EF是中位線時(shí),所裁矩形的面積最大若木板余料的形狀改變,請(qǐng)你探究:
如圖2,現(xiàn)有一塊五邊形的木板余料ABCDE,,,,,現(xiàn)從中裁出一個(gè)以為內(nèi)角且面積最大的矩形,則該矩形的面積為______.
如圖3,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測(cè)量,,,且,從中裁出頂點(diǎn)M,N在邊BC上且面積最大的矩形PQMN,則該矩形的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,由一些完全相同的小正方體搭成的幾何體的俯視圖和左視圖,組成這個(gè)幾何體的小正方體的個(gè)數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)(x>0)與正比例函數(shù)y=kx、 (k>1)的圖象分別交于點(diǎn)A、B,若∠AOB=45°,則△AOB的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在學(xué)習(xí)概率的課堂上,老師提出的問(wèn)題:只有一張電影票,小麗和小芳想通過(guò)抽取撲克牌的游戲來(lái)決定誰(shuí)去看電影,請(qǐng)你設(shè)計(jì)一個(gè)對(duì)小麗和小芳都公平的方案.甲同學(xué)的方案:將紅桃2、3、4、5四張牌背面向上,小麗先抽一張,小芳從剩下的三張牌中抽一張,若兩張牌上的數(shù)字之和是奇數(shù),則小麗看電影,否則小芳看電影.
(1)甲同學(xué)的方案公平嗎?請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法說(shuō)明;
(2)乙同學(xué)將甲同學(xué)的方案修改為只用2、3、5、7四張牌,抽取方式及規(guī)則不變,乙的方案公平嗎?并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com