【題目】如圖,在等腰直角三角形中,點為它們的直角頂點,當有重疊部分時:

(1)①連接,如圖1,求證:

②連接,如圖2,求證:

(2)當無重疊部分時:連接,如圖3,當, 時,計算四邊形面積的最大值,并說明理由.

【答案】(1) 見解析;見解析;(2

【解析】試題分析:(1①利用同角的余角相等證出∠ACDBCE,然后利用“SAS”證明ACDBCE即可得出結論;

②因為ACECDB的一條邊ACBC,所以要證兩個三角形的面積相等只要證明ACBC邊上的高相等即可,過點EEFAC,過點DDHBC,通過證明CEFCDH即可得出結論;

2BCDBC邊上的高為h,同(1②的方法可得SACESBCD,所以S四邊形ABDESABCSCDESACESBCD5h,而hCD,故當hCD2S四邊形ABDE最大,代入h2求出最大值即可.

試題解析:

解:(1①∵∠ACDBCD90°,BCEBCD90°,

∴∠ACDBCE,

又∵ACBC,CDCE

∴△ACD≌△BCESAS),

ADBE;

②如圖:作EFACAC的延長線于點F,作DHBC于點H,

∵∠FCEECH90°,HCDECH90°

∴∠FCEHCD,

∵∠EFCDHC90°CECD,

CEFCDHAAS),

EFDH,

SACEAC·EF,SCDBBC·DH,ACBC,

SACESCDB;

2BCDBC邊上的高為h,

同(1②的方法可得SACESBCD

S四邊形ABDESABCSCDESACESBCD×52×222 SBCD 5h,

hCD,

∴當hCD2S四邊形ABDE最大,

∴四邊形ABDE的面積最大值為5×2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某探測隊在地面A、B兩處均探測出建筑物下方C處有生命跡象,已知探測線與地面的夾角分別是25°和60°,且AB=4米,求該生命跡象所在位置C的深度.(結果精確到1米.參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知頂點為(﹣3,﹣6)的拋物線y=ax2+bx+c經過點A,點(﹣2,m)和(﹣5,n)在該拋物線上,則下列結論中不正確的是( 。

A.>4ac
B.m>n
C.方程a+bx+c=﹣4的兩根為﹣5或﹣1
D.a+bx+c≥﹣6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明是個愛探究的學生,在學習完等腰三角形的判定定理之后,對于等腰(如圖甲),若,,小明發(fā)現(xiàn),只要作的平分線就可以將分成兩個等腰三角形.

(1)你認為小明的發(fā)現(xiàn)正確嗎?若正確,請給出證明過程;若不正確,請說明理由;

(2)請你對圖乙的三角形進行探索,將分成兩個等腰三角形,并寫出頂角度數(shù);

(3)請你對圖丙的三角形進行再探索,將分成三個等腰三角形,并寫出頂角度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】老師在課堂上出了一個問題:若點A(﹣2,y1),B(1,y2)和C(4,y3)都在反比例函數(shù)y=的圖象上,比較y1 , y2 , y3的大。
小明是這樣思考的:當k<0時,反比例函數(shù)的圖象是y隨x的增大而增大的,并且﹣2<1<4,所以y1<y2<y3
你認為小明的思考 (填“正確”和“不正確”),理由是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將-2,-1,0,1,2,3,4,5,6,7這10個數(shù)分別填寫在五角星中每兩條線的交點處(每個交點處只填寫一個數(shù)),將每一條線上的4個數(shù)相加,共得5個數(shù),設為a1,a2,a3,a4,a5.

(1)求(a1+a2+a3+a4+a5)的值;

(2)交換其中任何兩位數(shù)的位置后,(a1+a2+a3+a4+a5)的值是否改變?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】北京聯(lián)合張家口成功申辦2022年冬奧會后,滑雪運動已成為人們喜愛的娛樂健身項目.如圖是某滑雪場為初學者練習用的斜坡示意圖,出于安全因素考慮,決定將斜坡的傾角由45°降為30°,已知原斜坡坡面AB長為200米,點D,B,C在同一水平地面上,求改善后的斜坡坡角向前推進的距離BD.(結果保留整數(shù).參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B是直線m上兩個定點,C是直線n上一個動點,且m∥n.以下說法:

①△ABC的周長不變;

②△ABC的面積不變;

③△ABC中,AB邊上的中線長不變.

④∠C的度數(shù)不變;

C到直線m的距離不變.

其中正確的有________(填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)(x﹣1)(x+1)=x2﹣1,

(x﹣1)(x2+x+1)=x3﹣1,

(x﹣1)(x3+x2+x+1)=   ,

猜想:(x﹣1)(xn+xn1+…+x2+x+1)=   ,

(2)根據(jù)以上結果,試寫出下面兩式的結果

①(x﹣1)(x49+x48+…+x2+x+1)=   ,

②(x20﹣1)÷(x﹣1)=   

(3)利用以上結論求值:1+3+32+33+34+……+32017

查看答案和解析>>

同步練習冊答案