某課題組在探究“泵站問題”時抽象出數(shù)學(xué)模型:
直線l同旁有兩個定點A、B,在直線l上存在點P,使得PA+PB的值最小.解法:作點A關(guān)于直線l的對稱點A′,連接A′B,則A′B與直線l的交點即為P,且PA+PB的最小值為A′B.
請利用上述模型解決下列問題:
(1)幾何應(yīng)用:如圖1,等腰直角三角形ABC的直角邊長為2,E是斜邊AB的中點,P是AC邊上的一動點,則PB+PE的最小值為______
【答案】
分析:(1)本題要在AC上找一點P,使PB+PE的值最。O(shè)點B關(guān)于AC的對稱點為B′,使PB+PE的值最小就是使PB′+PE的值最。
(2)設(shè)點B關(guān)于AC的對稱點為B′,根據(jù)垂線段最短及兩點之間,線段最短可知當(dāng)B′、M、N三點共線且B′N⊥AB時BM+MN的值最。
(3)根據(jù)兩點間距離公式,可知本題即求點P(x,0)(0≤x≤4)到點A(0,1)和點B(4,2)的距離之和的最小值,在平面直角坐標(biāo)系中畫出圖形,即可求解.
解答:解:(1)作點B關(guān)于AC的對稱點B′,連接B′E交AC于P,此時PB+PE的值最小,連接AB′.
∵∠B′AC=∠BAC=45°,∴∠B′AB=90°.
又∵AB′=AB=
,AE=
,
∴PB+PE的最小值=B′E=
.
(2)作點B關(guān)于AC的對稱點B′,過B′作B′N⊥AB于N,交AC于M.
此時BM+MN的值最。瓸M+MN=B′N.
理由:如圖1,在AC上任取一點M
1(不與點M重合),
在AB上任取一點N
1,連接B′M
1、BM
1、M
1N
1、B′N
1.
∵點B′與點B關(guān)于AC對稱,
∴BM
1=B′M
1,
∴BM
1+M
1N
1=B′M
1+M
1N
1>B′N
1.
又∵B′N
1>B′N,BM+MN=B′N,
∴BM
1+M
1N
1>BM+MN.
計算:如圖2
∵點B′與點B關(guān)于AC對稱,
∴AB′=AB,
又∵∠BAC=30°,
∴∠B′AB=60°,
∴△B′AB是等邊三角形.
∴B′B=AB=2,∠B′BN=60°.
又∵B′N⊥AB,
∴B′N=B′B•sin60°=
.
(3)構(gòu)造圖形如圖所示:
在直角坐標(biāo)系中,設(shè)點A(0,1)、B(4,2)、P(x,0)(0≤x≤4).
那么PA+PB=
.
所求
的最小值就是求PA+PB的最小值.
作點A關(guān)于x軸的對稱點A′,過A′作y軸的垂線,過點Bx軸的垂線,兩垂線交于點C.
則A′C=4,BC=3,A′B=
.
所求
的最小值是5.
點評:此題主要考查軸對稱--最短路線問題.解這類問題的關(guān)鍵是將實際問題抽象或轉(zhuǎn)化為數(shù)學(xué)模型,把兩條線段的和轉(zhuǎn)化為一條線段.