【題目】在直角坐標(biāo)系中,O 為坐標(biāo)原點(diǎn),已知點(diǎn) A1,2),點(diǎn) P y 軸正半軸上的一點(diǎn),且AOP 為等腰三角形,則點(diǎn) P 的坐標(biāo)為_____________

【答案】

【解析】

有三種情況:①以O為圓心,以OA為半徑畫弧交y軸于D,求出OA即可;②以A為圓心,以OA為半徑畫弧交y軸于P,求出OP即可;③作OA的垂直平分線交y軸于C,則ACOC,根據(jù)勾股定理求出OC即可.

有三種情況:①以O為圓心,以OA為半徑畫弧交y軸于D,則OAOD

D0);

②以A為圓心,以OA為半徑畫弧交y軸于P,OP2×yA=4

P0,4);

③作OA的垂直平分線交y軸于C,則ACOC,

由勾股定理得:OCAC,

OC,

C0,);

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某化工車間發(fā)生有害氣體泄漏,從泄漏開始到完全控制利用了,之后將對(duì)泄漏的有害氣體進(jìn)行處理,線段表示氣體泄漏時(shí)車間內(nèi)檢測(cè)表顯示數(shù)據(jù)與時(shí)間() 之間的函數(shù)關(guān)系(), 反比例函數(shù)對(duì)應(yīng)曲線表示氣體泄漏控制后檢測(cè)表顯示數(shù)據(jù)與時(shí)間() 之間的函數(shù)關(guān)系().根據(jù)圖像解答下列問題:

(1)試求出檢測(cè)表在氣體泄漏之初顯示的數(shù)據(jù)(即點(diǎn)的縱坐標(biāo));

(2)求反比例函數(shù)的表達(dá)式, 并確定車間內(nèi)檢測(cè)表恢復(fù)到氣體泄漏之初數(shù)據(jù)時(shí)對(duì)應(yīng)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是兩塊完全一樣的含30°角的直角三角尺分別記做△ABC△A′B′C′,現(xiàn)將兩塊三角尺重疊在一起,設(shè)較長(zhǎng)直角邊的中點(diǎn)為M,繞中點(diǎn)M轉(zhuǎn)動(dòng)上面的三角尺ABC,使其直角頂點(diǎn)C恰好落在三角尺A′B′C′的斜邊A′B′當(dāng)∠A=30°,AC=10時(shí),兩直角頂點(diǎn)C,C′間的距離是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好改善河流的水質(zhì),治污公司決定購(gòu)買10臺(tái)污水處理設(shè)備現(xiàn)有AB兩種型號(hào)的設(shè)備,其中每臺(tái)的價(jià)格,月處理污水量如下表:經(jīng)調(diào)查:購(gòu)買一臺(tái)A型設(shè)備比購(gòu)買一臺(tái)B型設(shè)備多2萬元,購(gòu)買2臺(tái)A型設(shè)備比購(gòu)買3臺(tái)B型設(shè)備少6萬元.

A

B

價(jià)格萬元臺(tái)

a

b

處理污水量

240

200

a,b的值;

治污公司經(jīng)預(yù)算購(gòu)買污水處理設(shè)備的資金不超過105萬元,你認(rèn)為該公司有哪幾種購(gòu)買方案;

的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請(qǐng)你為治污公司設(shè)計(jì)一種最省錢的購(gòu)買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線y=x2-2x+c與y軸的交點(diǎn)為(0,-3),則下列說法不正確的是

A.拋物線開口向上

B拋物線的對(duì)稱軸是x=1

C當(dāng)x=1時(shí),y的最大值為-4

D拋物線與x軸的交點(diǎn)為(-1,0),(3,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)D為拋物線頂點(diǎn),點(diǎn)E在拋物線上,點(diǎn)Fx軸上,四邊形OCEF為矩形,且OF=2,EF=3

1)求拋物線所對(duì)應(yīng)的函數(shù)解析式;

2)求ΔABC的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰三角形ABC中,AB=AC,點(diǎn)D,E分別在邊ABAC上,且AD=AE,連接BE、CD,交于點(diǎn)F.

(1)求證:∠ABE=∠ACD;

(2)求證:過點(diǎn)A、F的直線垂直平分線段BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價(jià)銷售.

1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在四邊形 ABCD 中,∠Ax°,∠Cy°.

(1) ABC+∠ADC °.(用含 x,y 的代數(shù)式表示)

(2) BE、DF 分別為∠ABC、∠ADC 的外角平分線,

①若 BEDF,x30,則 y ;

②當(dāng) y2x 時(shí),若 BE DF 交于點(diǎn) P,且∠DPB20°,求 y 的值.

(3) 如圖②,∠ABC 的平分線與∠ADC 的外角平分線交于點(diǎn) Q,則∠Q °.(用含 x,y 的代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案