【題目】為了維護(hù)國家主權(quán)和海洋權(quán)利,我國海監(jiān)部門對(duì)中國海域?qū)崿F(xiàn)常態(tài)化管理.某日,我國海監(jiān)船在某海島附近的海域執(zhí)行巡邏任務(wù).如圖,此時(shí)海監(jiān)船位于海島P的北偏東30°方向,距離海島100海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于海島P的南偏東45°方向的B處,求海監(jiān)船航行了多少海里(結(jié)果保留根號(hào))?

【答案】輪船航行的距離AB約為193.2海里.

【解析】

過點(diǎn)PPCABC點(diǎn),則線段PC的長(zhǎng)度即為海監(jiān)船與燈塔P的最近距離.解等腰直角三角形APC,即可求出PC的長(zhǎng)度;海監(jiān)船航行的路程即為AB的長(zhǎng)度.先解RtPCB,求出BC的長(zhǎng),再得出ACPC,則ABAC+BC

過點(diǎn)PPCABC點(diǎn),則線段PC的長(zhǎng)度即為海監(jiān)船與燈塔P的最近距離.

由題意,得∠APC90°45°45°,∠B30°AP100海里.

RtAPC中,∵∠ACP90°,∠APC45°,

PCACAP50海里.

RtPCB中,∵∠BCP90°,∠B30°,PC50海里,

BCPC50海里,

ABAC+BC50+5050+≈501.414+2.449≈193.2(海里),

答:輪船航行的距離AB約為193.2海里.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平行四邊形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,過點(diǎn)OEFBCEFAB、CD分別相交于點(diǎn)E、F,則DOF的面積與BOA的面積之比為( 。

A. 12B. 14C. 18D. 116

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,于點(diǎn)D,點(diǎn)E是直線AC上一動(dòng)點(diǎn),連接DE,過點(diǎn)D,交直線BC于點(diǎn)F

探究發(fā)現(xiàn):

如圖1,若,點(diǎn)E在線段AC上,則______;

數(shù)學(xué)思考:

如圖2,若點(diǎn)E在線段AC上,則______用含mn的代數(shù)式表示;

當(dāng)點(diǎn)E在直線AC上運(yùn)動(dòng)時(shí),中的結(jié)論是否任然成立請(qǐng)僅就圖3的情形給出證明;

拓展應(yīng)用:若,,,請(qǐng)直接寫出CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在三角形紙片ABC中,∠A90°,∠C30°,AC10cm,將該紙片沿過點(diǎn)B的直線折疊,使點(diǎn)A落在斜邊BC上的一點(diǎn)E處,折痕記為BD(如圖1),剪去△CDE后得到雙層△BDE(如圖2),再沿著過△BDE某頂點(diǎn)的直線將雙層三角形剪開,使得展開后的平面圖形中有一個(gè)是平行四邊形,則所得平行四邊形的周長(zhǎng)為_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校隨機(jī)抽取九年級(jí)部分同學(xué)接受一次內(nèi)容為最適合自己的考前減壓方式的調(diào)查活動(dòng),學(xué)校收集整理數(shù)據(jù)后,將減壓方式分為五類,并繪制了圖1、圖2兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問題:

九年級(jí)接受調(diào)查的同學(xué)共有多少名,并補(bǔ)全條形統(tǒng)計(jì)圖;

九年級(jí)共有500名學(xué)生,請(qǐng)你估計(jì)該校九年級(jí)聽音樂減壓的學(xué)生有多少名;

若喜歡交流談心5名同學(xué)中有三名男生和兩名女生,心理老師想從5名同學(xué)中任選兩名同學(xué)進(jìn)行交流,請(qǐng)用畫樹狀圖或列表的方法求同時(shí)選出的兩名同學(xué)都是女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點(diǎn)D在拋物線上,DEy軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0t4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形OABC的邊OC、OA分別在x、y軸的正半軸上,設(shè)點(diǎn)B(4,4),點(diǎn)P(t,0)是x軸上一動(dòng)點(diǎn),過點(diǎn)O作OH⊥AP于點(diǎn)H,直線OH交直線BC于點(diǎn)D,連AD.

(1)如圖1,當(dāng)點(diǎn)P在線段OC上時(shí),求證:OP=CD;

(2)在點(diǎn)P運(yùn)動(dòng)過程中,△AOP與以A、B、D為頂點(diǎn)的三角形相似時(shí),求t的值;

(3)如圖2,拋物線y=﹣x2+x+4上是否存在點(diǎn)Q,使得以P、D、Q、C為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(操作發(fā)現(xiàn))

1)如圖1,將ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到ADE,連接BD,則∠ABD的度數(shù)是______

(類比探究)

2)如圖2,在等腰直角三角形ABC內(nèi)取一點(diǎn)P,使∠APB=135°,將ABP繞頂點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到ACP',連接PP'.請(qǐng)猜想BPCP'有怎樣的位置關(guān)系,并說明理由.

(解決問題)

3)如圖3,在等腰直角三角形ABC內(nèi)任取一點(diǎn)P,連接PA、PB、PC.求證:PC+PAPB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:長(zhǎng)寬比為1n為正整數(shù))的矩形稱為矩形.

下面,我們通過折疊的方式折出一個(gè)矩形,如圖a所示.

操作1:將正方形ABEF沿過點(diǎn)A的直線折疊,使折疊后的點(diǎn)B落在對(duì)角線AE上的點(diǎn)G處,折痕為AH

操作2:將FE沿過點(diǎn)G的直線折疊,使點(diǎn)F、點(diǎn)E分別落在邊AF,BE上,折痕為CD.則四邊形ABCD矩形.

1)證明:四邊形ABCD矩形;

2)點(diǎn)M是邊AB上一動(dòng)點(diǎn).

①如圖b,O是對(duì)角線AC的中點(diǎn),若點(diǎn)N在邊BC上,OMON,連接MN.求tanOMN的值;

②若AM=AD,點(diǎn)N在邊BC上,當(dāng)DMN的周長(zhǎng)最小時(shí),求的值;

③連接CM,作BRCM,垂足為R.若AB=2,則DR的最小值=

查看答案和解析>>

同步練習(xí)冊(cè)答案