【題目】如圖,拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),且.
(1)求拋物線的解析式及頂點(diǎn)的坐標(biāo);
(2)判斷的形狀,證明你的結(jié)論;
(3)點(diǎn)是拋物線對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),當(dāng)周長(zhǎng)最小時(shí),求點(diǎn)的坐標(biāo)及的最小周長(zhǎng).
【答案】(1),D;(2)是直角三角形,見(jiàn)解析;(3),.
【解析】
(1)直接將(1,0),代入解析式進(jìn)而得出答案,再利用配方法求出函數(shù)頂點(diǎn)坐標(biāo);
(2)分別求出AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,進(jìn)而利用勾股定理的逆定理得出即可;
(3)利用軸對(duì)稱(chēng)最短路線求法得出M點(diǎn)位置,求出直線的解析式,可得M點(diǎn)坐標(biāo),然后易求此時(shí)△ACM的周長(zhǎng).
解:(1)∵點(diǎn)在拋物線上,
∴,
解得:.
∴拋物線的解析式為,
∵,
∴頂點(diǎn)的坐標(biāo)為:;
(2)是直角三角形,
證明:當(dāng)時(shí),
∴,即,
當(dāng)時(shí),,
解得:,,
∴,
∴,,,
∵,,,
∴,
∴是直角三角形;
(3)如圖所示:BC與對(duì)稱(chēng)軸交于點(diǎn)M,連接,
根據(jù)軸對(duì)稱(chēng)性及兩點(diǎn)之間線段最短可知,此時(shí)的值最小,即周長(zhǎng)最小,
設(shè)直線解析式為:,則,
解得:,
故直線的解析式為:,
∵拋物線對(duì)稱(chēng)軸為
∴當(dāng)時(shí),,
∴,
最小周長(zhǎng)是:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把正方形ABCD繞著點(diǎn)A,按順時(shí)針?lè)较蛐D(zhuǎn)得到正方形AEFG,邊FG與BC交于點(diǎn)H(如圖).試問(wèn)線段HG與線段HB相等嗎?請(qǐng)先觀察猜想,然后再證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中, ,,,點(diǎn)是斜邊的中點(diǎn),以點(diǎn)為頂點(diǎn)作,射線、分別交邊、于點(diǎn)、.
特例
(1)如圖1,若,不添加輔助線,圖1中所有與相似的三角形為 , ;
操作探究:
(2)將(1)中的從圖1的位置開(kāi)始繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn),得到,如圖2,當(dāng)射線,分別交邊、于點(diǎn)、時(shí),求的值;
拓展延伸:
(3)如圖3,中,,,,點(diǎn)是斜邊的中點(diǎn),以點(diǎn)為頂點(diǎn)作,射線、分別交邊、的延長(zhǎng)線于點(diǎn)、,則的值為 .(用含、的代數(shù)式表示,直接回答即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD,EFGH都是平行四邊形,點(diǎn)O是內(nèi)的一點(diǎn),點(diǎn)E、F、G,H分別是OA、OB、OC、OD上的一點(diǎn),EF //AB,OA= 3OE,若陰影部分的面積為S,則的面積為( )
A.6SB.18SC.24SD.32S
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且OC2=OA·OB.
(1)證明:tan∠BAC· tan∠ABC=1;
(2)若點(diǎn)C的坐標(biāo)為(0,2),tan∠OCB=2,
①求該拋物線的表達(dá)式;
②若點(diǎn)D是該拋物線上的一點(diǎn),且位于直線BC上方,當(dāng)四邊形ABDC的面積最大時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x -2mx(m為常數(shù)),當(dāng)-1≤x≤2時(shí),函數(shù)y的最小值為-2,則m的值是( )
A. B. C. 或 D. -或
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),連接BC,AC,過(guò)點(diǎn)C作直線CD⊥AB于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),直線CE交⊙O于點(diǎn)F,連接BF與直線CD延長(zhǎng)線交于點(diǎn)G.求證:BC2=BG·BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以圓O為圓心,半徑為1的弧交坐標(biāo)軸于A,B兩點(diǎn),P是弧上一點(diǎn)(不與A,B重合),連接OP,設(shè)∠POB=α,則點(diǎn)P的坐標(biāo)是
A. (sinα,sinα) B. (cosα,cosα) C. (cosα,sinα) D. (sinα,cosα)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,中線BE,CD相交于點(diǎn)O,連接DE,下列結(jié)論: ①=; ②=;③=;④=.其中正確的個(gè)數(shù)有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com