【題目】如圖,在△ABC中,AB=5,AC=9,SABC= ,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),沿射線AB方向以每秒5個(gè)單位的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從C點(diǎn)出發(fā),以相同的速度在線段AC上由C向A運(yùn)動(dòng),當(dāng)Q點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng),以PQ為邊作正方形PQEF(P、Q、E、F按逆時(shí)針排序),以CQ為邊在AC上方作正方形QCGH.

(1)求tanA的值;
(2)設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t,正方形PQEF的面積為S,請(qǐng)?zhí)骄縎是否存在最小值?若存在,求出這個(gè)最小值,若不存在,請(qǐng)說明理由;
(3)當(dāng)t為何值時(shí),正方形PQEF的某個(gè)頂點(diǎn)(Q點(diǎn)除外)落在正方形QCGH的邊上,請(qǐng)直接寫出t的值.

【答案】
(1)

解:如圖1,過點(diǎn)B作BM⊥AC于點(diǎn)M,

∵AC=9,SABC= ,

ACBM= ,即 ×9BM=

解得BM=3.

由勾股定理,得

AM= = =4,

則tanA= = ;


(2)

存在.

如圖2,過點(diǎn)P作PN⊥AC于點(diǎn)N.

依題意得AP=CQ=5t.

∵tanA= ,

∴AN=4t,PN=3t.

∴QN=AC﹣AN﹣CQ=9﹣9t.

根據(jù)勾股定理得到:PN2+NQ2=PQ2,

S正方形PQEF=PQ2=(3t)2+(9﹣9t)2=90t2﹣162t+81(0<t< ).

∵﹣ = = 在t的取值范圍之內(nèi),

∴S最小值= = =


(3)

①如圖3,當(dāng)點(diǎn)E在邊HG上時(shí),t1= ;②如圖4,當(dāng)點(diǎn)F在邊HG上時(shí),t2= ;③如圖5,當(dāng)點(diǎn)P邊QH(或點(diǎn)E在QC上)時(shí),t3=1④如圖6,當(dāng)點(diǎn)F邊CG上時(shí),t4=


【解析】(1)如圖1,過點(diǎn)B作BM⊥AC于點(diǎn)M,利用面積法求得BM的長度,利用勾股定理得到AM的長度,最后由銳角三角函數(shù)的定義進(jìn)行解答;(2)如圖2,過點(diǎn)P作PN⊥AC于點(diǎn)N.利用(1)中的結(jié)論和勾股定理得到PN2+NQ2=PQ2 , 所以由正方形的面積公式得到S關(guān)于t的二次函數(shù),利用二次函數(shù)的頂點(diǎn)坐標(biāo)公式和二次函數(shù)圖象的性質(zhì)來求其最值;(3)需要分類討論:當(dāng)點(diǎn)E在邊HG上、點(diǎn)F在邊HG上、點(diǎn)P邊QH(或點(diǎn)E在QC上)、點(diǎn)F邊C上時(shí)相對(duì)應(yīng)的t的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,地面上兩個(gè)村莊C、D處于同一水平線上,一飛行器在空中以6千米/小時(shí)的速度沿MN方向水平飛行,航線MN與C、D在同一鉛直平面內(nèi).當(dāng)該飛行器飛行至村莊C的正上方A處時(shí),測(cè)得∠NAD=60°;該飛行器從A處飛行40分鐘至B處時(shí),測(cè)得∠ABD=75°.求村莊C、D間的距離( 取1.73,結(jié)果精確到0.1千米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了弘揚(yáng)優(yōu)秀傳統(tǒng)文化,某中學(xué)舉辦了文化知識(shí)大賽,其規(guī)則是:每位參賽選手回答100道選擇題,答對(duì)一題得1分,不答或錯(cuò)答不扣分,賽后對(duì)全體參賽選手的答題情況進(jìn)行了相關(guān)統(tǒng)計(jì),整理并繪制成如下圖表:

組別

分?jǐn)?shù)段

頻數(shù)(人)

頻率

1

50≤x<60

30

0.1

2

60≤x<70

45

0.15

3

70≤x<80

60

n

4

80≤x<90

m

0.4

5

90≤x<100

45

0.15


請(qǐng)根據(jù)以圖表信息,解答下列問題:
(1)表中m= , n=;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)在得分前5名的同學(xué)中,有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)參加區(qū)級(jí)的比賽,用樹狀圖或列表法求選出的兩名同學(xué)恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李老師為了了解所教班級(jí)學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,對(duì)本班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類,A:很好;B:較好;C:一般;D:較差.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)李老師一共調(diào)查了多少名同學(xué)?
(2)C類女生有3名,D類男生有1名,將圖1條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,李老師想從被調(diào)查的A類和D類學(xué)生中各隨機(jī)選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A為某封閉圖形邊界上一定點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿其邊界順時(shí)針勻速運(yùn)動(dòng)一周.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為x,線段AP的長為y.表示y與x的函數(shù)關(guān)系的圖象大致如圖,則該封閉圖形可能是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點(diǎn),點(diǎn)D、E分別在AC、BC邊上運(yùn)動(dòng),且保持AD=CE.連接DE、DF、EF.在此運(yùn)動(dòng)變化的過程中,下列結(jié)論:
①△DFE是等腰直角三角形;
②四邊形CDFE不可能為正方形;
③四邊形CDFE的面積保持不變;
④△CDE面積的最大值為8.
其中正確的結(jié)論有( )個(gè).

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:拋物線y=ax2+bx+c交y軸于點(diǎn)C(0,4),對(duì)稱軸x=2與x軸交于點(diǎn)D,頂點(diǎn)為M,且DM=OC+OD,
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)P(x,y)是第一象限內(nèi)該拋物線上的一個(gè)動(dòng)點(diǎn),△PCD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求當(dāng)x取多少時(shí),S的值最大,最大是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2015年5月31日,我國飛人蘇炳添在美國尤金舉行的國際田聯(lián)鉆石聯(lián)賽100米男子比賽中,獲得好成績,成為歷史上首位突破10秒大關(guān)的黃種人.如表是蘇炳添近五次大賽參賽情況:

比賽日期

2012﹣8﹣4

2013﹣5﹣21

2014﹣9﹣28

2015﹣5﹣20

2015﹣5﹣31

比賽地點(diǎn)

英國倫敦

中國北京

韓國仁川

中國北京

美國尤金

成績(秒)

10.19

10.06

10.10

10.06

9.99

則蘇炳添這五次比賽成績的眾數(shù)和平均數(shù)分別為( 。
A.10.06秒,10.06秒
B.10.10秒,10.06秒
C.10.06秒,10.08秒
D.10.08秒,10.06秒

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館準(zhǔn)備購進(jìn)一批換氣扇,從電器商場了解到:一臺(tái)A型換氣扇和三臺(tái)B型換氣扇共需275元;三臺(tái)A型換氣扇和二臺(tái)B型換氣扇共需300元.
(1)求一臺(tái)A型換氣扇和一臺(tái)B型換氣扇的售價(jià)各是多少元;
(2)若該賓館準(zhǔn)備同時(shí)購進(jìn)這兩種型號(hào)的換氣扇共40臺(tái)并且A型換氣扇的數(shù)量不多于B型換氣扇數(shù)量的3倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢的購買方案,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案