【題目】如圖,RtABC中,AB=AC,BAC=90°,BECE,垂足是E,BEAC于點D,F(xiàn)BE上一點,AFAE,且C是線段AF的垂直平分線上的點,AF=2,則DF=________.

【答案】3.

【解析】

由題意可證的△ABF≌△ACE,可得△AEF為等腰直角三角形,取AF的中點O,連接COBE與點G,連接AG,可得△AGF, △AGE,△CEG均為等腰直角三角形,可得AG平行等于CE,可得四邊形AGCE為平行四邊形,可得FD的長.

解:如圖

Rt△ABC中,AB=AC,∠BAC=90°,∠ABC=∠ACB=45°,

∠BAC=90°,BE⊥CE,∠DAE∠BACEAF的公共角

∠BAF=∠CAE,

∠ABC=∠ACB=45°, BE⊥CE

∠ABF+∠CBE=45°,∠CBE+∠ACB+∠ACE=90°,: ∠CBE+∠ACE=45°,

∠ABF=∠ACE,

△ABF△ACE中,有

△ABF≌△ACE,

AE=AF, △AEF為等腰直角三角形, AF的中點O,連接COBE與點G,連接AG,

C是線段AF的垂直平分線上的點,易得△AGF, △AGE,△CEG均為等腰直角三角形,

AF=2 AG=GE=CE=FG=2,

AG⊥BE,CE⊥BE,可得AG∥CE,

四邊形AGCE為平行四邊形,

GD=DE=1,

DF=FG+GD=2+1=3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:MON=30o,點A1、A2、A3 在射線ON上,點B1、B2、B3…..在射線OM上,A1B1A2. A2B2A3、A3B3A4……均為等邊三角形,若OA1=l,則A6B6A7 的邊長為【 】

A.6 B.12 C.32 D.64

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小剛同學動手剪了如圖所示的正方形與長方形紙片若干張

(1)他用1張1號、1張2號和2張3號卡片拼出一個新的圖形(如圖根據(jù)這個圖形的面積關系寫出一個你所熟悉的乘法公式,這個乘法公式是 ;

(2)如果要拼成一個長為(a+2b),寬為(a+b)的大長方形,則需要2號卡片 張,3號卡片 張;

(3)當他拼成如圖所示的長方形,根據(jù)6張小紙片的面積和等于打紙片(長方形)的面積可以把多項式a2+3ab+2b2分解因式,其結(jié)果是

(4)動手操作,請你依照小剛的方法,利用拼圖分解因式a2+5ab+6b2= 畫出拼圖

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題
(1)計算:(﹣ 2﹣|2﹣ |﹣3tan30°;
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的袋子中裝有僅顏色不同的5個小球,其中紅球3個,黑球2個.
(1)先從袋中取出m(m>1)個紅球,再從袋子中隨機摸出1個球,將“摸出黑球”記為事件A,填空:若A為必然事件,則m的值為 , 若A為隨機事件,則m的取值為
(2)若從袋中隨機摸出2個球,正好紅球、黑球各1個,求這個事件的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,PB、PC分別是⊙O的切線,切點為B、C,PC、BA的延長線交于點D,DE⊥PO,交PO的延長線于點E.
(1)求證:∠DPO=∠EDB;
(2)若PB=3,DB=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD被直線EF所截,交點分別為G,H, ∠CHG=∠DHG=∠AGE.

(1)CDEF有怎樣的位置關系?請說明理由.

(2)求∠CHG的同位角、內(nèi)錯角、同旁內(nèi)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一些半徑相同的小圓按如圖所示的規(guī)律擺放,第1個圖形有4個小圓,第2個圖形有8個小圓,第3個圖形有14個小圓,…,依次規(guī)律,第6個圖形的小圓個數(shù)是(

A. 56 B. 54 C. 44 D. 42

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點C與某建筑物底端B相距306米(點C與點B在同一水平面上),某同學從點C出發(fā),沿同一剖面的斜坡CD行走195米至坡頂D處,斜坡CD的坡度(或坡比)i=1:2.4,在D處測得該建筑物頂端A的俯視角為20°,則建筑物AB的高度約為(精確到0.1米,參考數(shù)據(jù):sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( )

A.29.1米
B.31.9米
C.45.9米
D.95.9米

查看答案和解析>>

同步練習冊答案