【題目】如圖,在邊長為4的正方形ABCD中,點(diǎn)E、F分別是邊BC、CD上的動點(diǎn),且BE=CF,連接BF、DE,則BF+DE的最小值為()
A.B.C.D.
【答案】D
【解析】
連接AE,利用△ABE≌△BCF轉(zhuǎn)化線段BF得到BF+DE=AE+DE,則通過作A點(diǎn)關(guān)于BC對稱點(diǎn)H,連接DH交BC于E點(diǎn),利用勾股定理求出DH長即可.
解:解:連接AE,如圖1,
∵四邊形ABCD是正方形,
∴AB=BC,∠ABE=∠BCF=90°.
又BE=CF,
∴△ABE≌△BCF(SAS).
∴AE=BF.
所以BF+DE最小值等于AE+DE最小值.
作點(diǎn)A關(guān)于BC的對稱點(diǎn)H點(diǎn),如圖2,
連接BH,則A、B、H三點(diǎn)共線,
連接DH,DH與BC的交點(diǎn)即為所求的E點(diǎn).
根據(jù)對稱性可知AE=HE,
所以AE+DE=DH.
在Rt△ADH中,DH2=AH2+AD2=82+42=80
∴DH=4
∴BF+DE最小值為4
故選: D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在數(shù)軸上A點(diǎn)表示數(shù),B點(diǎn)表示數(shù),、滿足||+||=0;
(1)點(diǎn)A表示的數(shù)為_____;點(diǎn)B表示的數(shù)為_____;
(2)若在原點(diǎn)O處放一擋板,一小球甲從點(diǎn)A處以1個(gè)單位/秒的速度向左運(yùn)動;同時(shí)另一小球乙從點(diǎn)B處以2個(gè)單位/秒的速度也向左運(yùn)動,在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來的速度向相反的方向運(yùn)動,設(shè)運(yùn)動的時(shí)間為t(秒),
①當(dāng)t=1時(shí),甲小球到原點(diǎn)的距離=_____;乙小球到原點(diǎn)的距離=_____.
當(dāng)t=3時(shí),甲小球到原點(diǎn)的距離=_____;乙小球到原點(diǎn)的距離=_____.
②試探究:甲,乙兩小球到原點(diǎn)的距離可能相等嗎?若不能,請說明理由.若能,請直接寫出甲,乙兩小球到原點(diǎn)的距離相等時(shí)經(jīng)歷的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知兩條射線OM∥CN,動線段AB的兩個(gè)端點(diǎn)A、B分別在射線OM、CN上,且∠C =∠OAB =108°,F點(diǎn)在線段CB上,OB平分∠AOF,OE平分∠COF.
(1)請?jiān)趫D中找出與∠AOC相等的角,并說明理由;
(2)若平移AB,那么∠OBC與∠OFC的度數(shù)比是否隨著AB位置變化而變化?若變化,找出變化規(guī)律;若不變,求出這個(gè)比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=+bx+c(a>0)的頂點(diǎn)為P,其圖象與x軸有兩個(gè)交點(diǎn)A(﹣m,0),B(1,0),交y軸于點(diǎn)C(0,﹣3am+6a),以下說法:①m=3;②當(dāng)∠APB=120°時(shí),a=;③當(dāng)∠APB=120°時(shí),拋物線上存在點(diǎn)M(M與P不重合),使得△ABM是頂角為120°的等腰三角形;④拋物線上存在點(diǎn)N,當(dāng)△ABN為直角三角形時(shí),有a≥.正確的是( ).
A.①② B.③④ C.①②③ D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=mx+4的圖象與x軸相交于點(diǎn)A,與反比例函數(shù)y= (x>0)的圖象相交于點(diǎn)B(1,6).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)設(shè)點(diǎn)P是x軸上一點(diǎn),若S△APB=18,直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司有A、B兩種型號的客車,它們的載客量、每天的租金如表所示:
A型號客車 | B型號客車 | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 600 | 450 |
已知某中學(xué)計(jì)劃租用A、B兩種型號的客車共10輛,同時(shí)送七年級師生到沙家參加社會實(shí)踐活動,已知該中學(xué)租車的總費(fèi)用不超過5600元.
(1)求最多能租用多少輛A型號客車?
(2)若七年級的師生共有380人,請寫出所有可能的租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB⊥AC,AB=2,AC=4.對角線AC、BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)°(0°<<180°),分別交直線BC、AD于點(diǎn)E、F.
(1)當(dāng)=_____°時(shí),四邊形ABEF是平行四邊形;
(2)在旋轉(zhuǎn)的過程中,從A、B、C、D、E、F中任意4個(gè)點(diǎn)為頂點(diǎn)構(gòu)造四邊形,
①當(dāng)=_______°時(shí),構(gòu)造的四邊形是菱形;
②若構(gòu)造的四邊形是矩形,求該矩形的兩邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知ABC在平面直角坐標(biāo)系內(nèi),滿足:點(diǎn)A在y軸正半軸上移動,點(diǎn)B在x軸負(fù)半軸上移動,點(diǎn)C為y軸右側(cè)一動點(diǎn).
點(diǎn)A0,a和點(diǎn)Bb,0坐標(biāo)恰好滿足:,直接寫出a,b的值.
⑵如圖①,當(dāng)點(diǎn)C在第四象限時(shí),若AM、AO將BAC三等分,BM、BO將ABC三等分,在A、B、C的運(yùn)動過程中,試求出C和M的關(guān)系.
⑶探究:
(i)如圖②,當(dāng)點(diǎn)C在第四象限時(shí),若AM平分CAO,BM平分CBO,在A、B、C的運(yùn)動過程中,C和M是否存在確定的數(shù)量關(guān)系?若存在,請證明你的結(jié)論;若不存在,請說明理由.
(ii)如圖③,當(dāng)點(diǎn)C在第一象限時(shí),且在(i)中的條件不變的前提下,C和M又有何數(shù)量關(guān)系?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教室里的飲水機(jī)接通電源就進(jìn)入自動程序,開機(jī)加熱時(shí)每分鐘上升10℃,加熱到100℃,停止加熱,水溫開始下降,此時(shí)水溫(℃)與開機(jī)后用時(shí)(min)成反比例關(guān)系.直至水溫降至30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動開機(jī),重復(fù)上述自動程序.若在水溫為30℃時(shí),接通電源后,水溫y(℃)和時(shí)間(min)的關(guān)系如圖,為了在上午第一節(jié)下課時(shí)(8:45)能喝到不超過50℃的水,則接通電源的時(shí)間可以是當(dāng)天上午的( )
A.7:20 B.7:30 C.7:45 D.7:50
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com