【題目】如圖,在□ABCD 中,對(duì)角線 AC 與 BD 相交于點(diǎn) O ,點(diǎn) E , F 分別為 OB , OD 的中點(diǎn),延長(zhǎng) AE 至 G ,使 EG =AE ,連接 CG .
(1)求證: △ABE≌△CDF ;
(2)當(dāng) AB 與 AC 滿足什么數(shù)量關(guān)系時(shí),四邊形 EGCF 是矩形?請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2)時(shí),四邊形EGCF是矩形,理由見(jiàn)解析.
【解析】
(1)由平行四邊形的性質(zhì)得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行線的性質(zhì)得出∠ABE=∠CDF,證出BE=DF,由SAS證明△ABE≌△CDF即可;
(2)證出AB=OA,由等腰三角形的性質(zhì)得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位線定理得出OE∥CG,EF∥CG,得出四邊形EGCF是平行四邊形,即可得出結(jié)論.
(1)證明:∵四邊形ABCD是平行四邊形,
∴AB=CD,AB∥CD,OB=OD,OA=OC,
∴∠ABE=∠CDF,
∵點(diǎn)E,F分別為OB,OD的中點(diǎn),
∴BE=OB,DF=OD,
∴BE=DF,
在△ABE和△CDF中,
(2)當(dāng)AC=2AB時(shí),四邊形EGCF是矩形;理由如下:
∵AC=2OA,AC=2AB,
∴AB=OA,
∵E是OB的中點(diǎn),
∴AG⊥OB,
∴∠OEG=90°,
同理:CF⊥OD,
∴AG∥CF,
∴EG∥CF,
∵EG=AE,OA=OC,
∴OE是△ACG的中位線,
∴OE∥CG,
∴EF∥CG,
∴四邊形EGCF是平行四邊形,
∵∠OEG=90°,
∴四邊形EGCF是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】楊陽(yáng)同學(xué)沿一段筆直的人行道行走,在由A步行到達(dá)B處的過(guò)程中,通過(guò)隔離帶的空隙O,剛好瀏覽完對(duì)面人行道宣傳墻上的社會(huì)主義核心價(jià)值觀標(biāo)語(yǔ),其具體信息匯集如下:
如圖,AB∥OH∥CD,相鄰兩平行線間的距離相等,AC,BD相交于O,OD⊥CD.垂足為D,已知AB=20米,請(qǐng)根據(jù)上述信息求標(biāo)語(yǔ)CD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在數(shù)軸上分別表示.
(1)對(duì)照數(shù)軸填寫下表:
5 | 3 | |||||
2 | 0 | 2 | ||||
兩點(diǎn)的距離 | 3 | 7 | ________ | 4 | ________ | 0 |
(2)若兩點(diǎn)間的距離記為,試問(wèn)和有何數(shù)量關(guān)系?
(3)數(shù)軸上的整數(shù)點(diǎn)為,它到3和的距離之和為7,寫出這些整數(shù).
(4)若點(diǎn)表示的數(shù)為,當(dāng)點(diǎn)在什么位置時(shí),取得的值最?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為開(kāi)展“校園讀書(shū)活動(dòng)”,雅禮中學(xué)讀書(shū)會(huì)計(jì)劃采購(gòu)數(shù)學(xué)文化和文學(xué)名著兩類書(shū)籍共100本. 經(jīng)了解,購(gòu)買20 本數(shù)學(xué)文化和50本文學(xué)名著共需1700元, 30本數(shù)學(xué)文化比30本文學(xué)名著貴450 元. (注:所采購(gòu)的同類書(shū)籍價(jià)格都一樣)
(1)求每本數(shù)學(xué)文化和文學(xué)名著的價(jià)格;
(2)若校園讀書(shū)會(huì)要求購(gòu)買數(shù)學(xué)文化本數(shù)不少于文學(xué)名著,且總費(fèi)用不超過(guò)2780元,請(qǐng)求出所有符合條件的購(gòu)書(shū)方案。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC是等邊三角形,點(diǎn)E、F分別為射線AC、射線CB上兩點(diǎn),CE=BF,直線EB、AF交于點(diǎn)D.
(1)當(dāng)E、F在邊AC、BC上時(shí)如圖,求證:△ABF≌△BCE.
(2)當(dāng)E在AC延長(zhǎng)線上時(shí),如圖,AC=10,S△ABC=25,EG⊥BC于G,EH⊥AB于H,HE=8,EG= .
(3)E、F分別在AC、CB延長(zhǎng)線上時(shí),如圖,BE上有一點(diǎn)P,CP=BD,∠CPB是銳角,求證:BP=AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)平行四邊形ABCD在平面直角坐標(biāo)系中的位置如圖所示,其中A(-4,0),B(2,0),C(3,3),反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)C.
(1)求此反比例函數(shù)的解析式;
(2)將平行四邊形ABCD沿x軸翻折得到平行四邊形ABC′D′,請(qǐng)說(shuō)明點(diǎn)D′在雙曲線上;
(3)連接AC,CD′,求△ACD′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠1+∠2=180°,∠3=∠B,試判斷∠AED與∠C的大小關(guān)系,并證明你的結(jié)論.
∠C與∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(鄰補(bǔ)角定義)
∴∠2=___(___),
∴AB∥EF(___)
∵∠3=___(___)
又∠B=∠3(已知)
∴∠B=___(等量代換)
∴DE∥BC(___)
∴∠C=∠AED(___).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形ABC中,BC=6,射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為
(1)連接EF,當(dāng)EF經(jīng)過(guò)AC邊的中點(diǎn)D時(shí),求證:△ADE≌△CDF
(2)填空:
①當(dāng)為 s時(shí),四邊形ACFE是菱形;
②當(dāng)為 s時(shí),以A,F,C,E為頂點(diǎn)的四邊形是直角梯形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為推動(dòng)陽(yáng)光體育活動(dòng)的廣泛開(kāi)展,引導(dǎo)學(xué)生積極參加體育鍛煉,學(xué)校準(zhǔn)備購(gòu)買一批運(yùn)動(dòng)鞋供學(xué)生借用.現(xiàn)從各年級(jí)隨機(jī)抽取了部分學(xué)生的鞋號(hào),繪制了如下的統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 人,圖①中的m的值為 ,圖①中“38號(hào)”所在的扇形的圓心角度數(shù)為 ;
(2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是 ,中位數(shù)是 ;
(3)根據(jù)樣本數(shù)據(jù),若學(xué)校計(jì)劃購(gòu)買200雙運(yùn)動(dòng)鞋,建議購(gòu)買36號(hào)運(yùn)動(dòng)鞋多少雙?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com