已知關(guān)于x的方程mx2+(3-2m)x+(m-3)=0,其中m>0.
(1)求證:方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程的兩個(gè)實(shí)數(shù)根分別為x1,x2,其中x1>x2,若,求y與m的函數(shù)關(guān)系式;
(3)在(2)的條件下,請(qǐng)根據(jù)函數(shù)圖象,直接寫(xiě)出使不等式y(tǒng)≤-m成立的m的取值范圍.

【答案】分析:(1)本題需先求出△的值,再證出△>0,即可得出結(jié)論.
(2)本題需先求出x的值,再代入y與x的關(guān)系式即可得出結(jié)果.
(3)本題需先分別畫(huà)出反比例函數(shù)和正比例函數(shù)的圖象,再根據(jù)圖象即可求出使不等式y(tǒng)≤-m成立的m的取值范圍.
解答:(1)證明:由題意可知,∵△=(3-2m)2-4m(m-3)=9>0,
即△>0.
∴方程總有兩個(gè)不相等的實(shí)數(shù)根.

(2)解:由求根公式,得
或x=1.
∵m>0,

∵x1>x2,


為所求.

(3)解:在同一平面直角坐標(biāo)系中
分別畫(huà)出
與y=-m(m>0)的圖象.
由圖象可得,由圖象可得
當(dāng)0<m≤1時(shí),y≤-m.
點(diǎn)評(píng):本題主要考查了一元二次方程的根的判別式,在解題時(shí)要注意綜合應(yīng)用根的判別式與反比例函數(shù)的關(guān)系式本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程mx+2=2(m-x)的解滿(mǎn)足方程|x-
1
2
|=0,則m的值為(  )
A、
1
2
B、2
C、
3
2
D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程mx+2=2(m-x)的解滿(mǎn)足|x-
12
|-1=0,則m的值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、已知關(guān)于x的方程mx+n=0的解是x=-2,則直線(xiàn)y=mx+n與x軸的交點(diǎn)坐標(biāo)是
(-2,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、已知關(guān)于x的方程mx+3=2(x-m)的解滿(mǎn)足|x-2|-3=0,則m的值為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程mx+3=x與方程5-2x=1的解相同,求m 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案