【題目】已知數(shù)軸上三點(diǎn)A,O,B表示的數(shù)分別為-3,0,1,點(diǎn)P為數(shù)軸上任意一點(diǎn),其表示的數(shù)為x.

(1)如果點(diǎn)P到點(diǎn)A,點(diǎn)B的距離相等,那么x=______;

(2)若點(diǎn)P到點(diǎn)A,點(diǎn)B的距離之和最小,則整數(shù)x是____________ ;

(3)當(dāng)點(diǎn)P到點(diǎn)A,點(diǎn)B的距離之和是6時(shí),求x的值;

(4)若點(diǎn)P以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)O沿著數(shù)軸的負(fù)方向運(yùn)動(dòng)時(shí),點(diǎn)E以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)A沿著數(shù)軸的負(fù)方向運(yùn)動(dòng)、點(diǎn)F以每秒4個(gè)單位長(zhǎng)度的速度從點(diǎn)B沿著數(shù)軸的負(fù)方向運(yùn)動(dòng),且三個(gè)點(diǎn)同時(shí)出發(fā),那么運(yùn)動(dòng)多少秒時(shí),點(diǎn)P到點(diǎn)E,點(diǎn)F的距離相等?

【答案】(1)-1;(2)-3,-2,-1,0,1;(3)x的值為(4)運(yùn)動(dòng)秒時(shí),點(diǎn)P到點(diǎn)E,點(diǎn)F的距離相等.

【解析】

(1)根據(jù)數(shù)軸上兩點(diǎn)間的距離的表示列出方程求解即可;

(2)根據(jù)兩點(diǎn)之間線段最短可知點(diǎn)P在點(diǎn)AB之間時(shí)點(diǎn)P到點(diǎn)A,點(diǎn)B的距離之和最小最短,然后寫出x的取值即可;

(3)根據(jù)AB的距離為4,等于6,分點(diǎn)P在點(diǎn)A的左邊和點(diǎn)B的右邊兩種情況分別列出方程,然后求解即可;

(4)設(shè)運(yùn)動(dòng)時(shí)間為t,分別表示出點(diǎn)P、E、F所表示的數(shù),再分別討論當(dāng)E、F重合(即相遇)時(shí)與不重合時(shí)兩種情況列出方程,然后求解即可.

(1)x=-1;

(2)整數(shù)x

(3)由題意得

當(dāng)在點(diǎn)左側(cè)時(shí),,解得

當(dāng)在點(diǎn)右側(cè)時(shí),,解得

綜上所述,x的值為

(4)設(shè)運(yùn)動(dòng)時(shí)間秒,由題意得經(jīng)過(guò)秒后,在數(shù)軸上對(duì)應(yīng)的數(shù)分別為

當(dāng)重合(即相遇)時(shí),,解得

當(dāng)不重合時(shí),由題意得的中點(diǎn),于是,解得

綜上所述,運(yùn)動(dòng)秒時(shí),點(diǎn)P到點(diǎn)E,點(diǎn)F的距離相等

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,下列圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個(gè)圖形中面積為1的正方形有2個(gè),第(2)個(gè)圖形中面積為1的正方形有5個(gè),第(3)個(gè)圖形中面積為1的正方形有9個(gè),……按此規(guī)律,則第50個(gè)圖形中面積為1的正方形的個(gè)數(shù)為( 。

A. 1322 B. 1323 C. 1324 D. 1325

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線的解析式為y=ax2 , 過(guò)點(diǎn)B1(1,0)作x軸的垂線,交拋物線于點(diǎn)A1(1,2);過(guò)點(diǎn)B2 ,0)作x軸的垂線,交拋物線于點(diǎn)A2;…;過(guò)點(diǎn)Bn(( n﹣1 , 0)(n為正整數(shù))作x軸的垂線,交拋物線于點(diǎn)An , 連接AnBn+1 , 得Rt△AnBnBn+1
(1)求a的值;
(2)直接寫出線段AnBn , BnBn+1的長(zhǎng)(用含n的式子表示);
(3)在系列Rt△AnBnBn+1中,探究下列問(wèn)題:
①當(dāng)n為何值時(shí),Rt△AnBnBn+1是等腰直角三角形?
②設(shè)1≤k<m≤n(k,m均為正整數(shù)),問(wèn):是否存在Rt△AkBkBk+1與Rt△AmBmBm+1相似?若存在,求出其相似比;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】李剛家去年養(yǎng)殖的豐收一號(hào)多寶魚喜獲豐收,上市20天全部售完,李剛對(duì)銷售情況進(jìn)行了跟蹤記錄,并將記錄情況繪成圖象,日銷售量y(單位:千克)與上市時(shí)間x(單位:天)的函數(shù)關(guān)系如圖所示.

(1)觀察圖象,直接寫出日銷售量的最大值;

(2)求李剛家多寶魚的日銷售量y與上市時(shí)間x的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知凸四邊形ABCD中,∠A=∠C=90°.

(1)如圖1,若DE平分∠ADC,BF平分∠ABC的鄰補(bǔ)角,判斷DEBF位置關(guān)系并證明.

(2)如圖2,若BF、DE分別平分∠ABC、∠ADC的鄰補(bǔ)角,判斷DEBF位置關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是工人師傅用同一種材料制成的金屬框架,已知,,其中的周長(zhǎng)為24cm,,則制成整個(gè)金屬框架所需這種材料的總長(zhǎng)度為( )

A. 45cm B. 48cm C. 51cm D. 54cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,,點(diǎn)PA點(diǎn)出發(fā)沿路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為B點(diǎn);點(diǎn)QB點(diǎn)出發(fā)沿路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為A點(diǎn)點(diǎn)PQ分別以1和3的運(yùn)動(dòng)速度同時(shí)開始運(yùn)動(dòng),兩點(diǎn)都要到相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng),在某時(shí)刻,分別過(guò)PQE,問(wèn):點(diǎn)P運(yùn)動(dòng)多少時(shí)間時(shí),QFC全等?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,若點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為a,點(diǎn)B在數(shù)軸上對(duì)應(yīng)的數(shù)為b,且a,b滿足|a+2|+(b﹣1)2=0.

(1)求線段AB的長(zhǎng);

(2)點(diǎn)C在數(shù)軸上對(duì)應(yīng)的數(shù)為x,且x是方程2x﹣1=x+2的解,在數(shù)軸上是否存在點(diǎn)P,使PA+PB=PC,若存在,直接寫出點(diǎn)P對(duì)應(yīng)的數(shù);若不存在,說(shuō)明理由;

(3)在(1)的條件下,將點(diǎn)B向右平移5個(gè)單位長(zhǎng)度至點(diǎn)B’,此時(shí)在原點(diǎn)O處放一擋板,一小球甲從點(diǎn)A處以1個(gè)單位長(zhǎng)度/秒的速度向左運(yùn)動(dòng);同時(shí)另一小球乙從點(diǎn)B’處以2個(gè)單位長(zhǎng)度/秒的速度也向左運(yùn)動(dòng),在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來(lái)的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒),求甲、乙兩小球到原點(diǎn)的距離相等時(shí)經(jīng)歷的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題12分小明有5張寫著不同數(shù)字的卡片,請(qǐng)按要求抽出卡片,完成下列各問(wèn)題:

(1)從中取出2張卡片,使這2張卡片上數(shù)字的乘積最大如何抽?最大值是多少?

答:我抽取的2張卡片是 、 ,乘積的最大值為

(2)從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,如何抽?最小值是多少?

答:我抽取的2張卡片是 、 ,商的最小值為

(3)從中取出4張卡片,用學(xué)過(guò)的運(yùn)算方法使結(jié)果為24如何抽?寫出運(yùn)算式子.(寫出一種即可

答:我抽取的4張卡片是 、 、 ,

算24的式子為

查看答案和解析>>

同步練習(xí)冊(cè)答案