用水平線和豎起線將平面分成若干個邊長為1的小正方形格子,小正方形的頂點稱為格點,以格點為頂點的多邊形稱為格點多邊形.設(shè)格點多邊形的面積為S,該多邊形各邊上的格點個數(shù)和為a,內(nèi)部的格點個數(shù)為b,則(史稱“皮克公式”).

小明認真研究了“皮克公式”,并受此啟發(fā)對正三角開形網(wǎng)格中的類似問題進行探究:正三角形網(wǎng)格中每個小正三角形面積為1,小正三角形的頂點為格點,以格點為頂點的多邊形稱為格點多邊形,下圖是該正三角形格點

中的兩個多邊形:

根據(jù)圖中提供的信息填表:

 

格點多邊形各邊上的格點的個數(shù)

格點邊多邊形內(nèi)部的格點個數(shù)

格點多邊形的面積

多邊形1

8

1

 

多邊形2

7

3

 

一般格點多邊形

a

b

S

則S與a、b之間的關(guān)系為S=      (用含a、b的代數(shù)式表示).

 

【答案】

解:填表如下:

 

格點多邊形各邊上的格點的個數(shù)

格點邊多邊形內(nèi)部的格點個數(shù)

格點多邊形的面積

多邊形1

8

1

8

多邊形2

7

3

11

一般格點多邊形

a

b

S

a+2(b﹣1)

【解析】

試題分析:根據(jù)8=8+2(1﹣1),11=7+2(3﹣1)得到S=a+2(b﹣1)。

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•常州)用水平線和豎起線將平面分成若干個邊長為1的小正方形格子,小正方形的頂點稱為格點,以格點為頂點的多邊形稱為格點多邊形.設(shè)格點多邊形的面積為S,該多邊形各邊上的格點個數(shù)和為a,內(nèi)部的格點個數(shù)為b,則S=
1
2
a+b-1(史稱“皮克公式”).
小明認真研究了“皮克公式”,并受此啟發(fā)對正三角開形網(wǎng)格中的類似問題進行探究:正三角形網(wǎng)格中每個小正三角形面積為1,小正三角形的頂點為格點,以格點為頂點的多邊形稱為格點多邊形,下圖是該正三角形格點中的兩個多邊形:

根據(jù)圖中提供的信息填表:
  格點多邊形各邊上的格點的個數(shù) 格點邊多邊形內(nèi)部的格點個數(shù) 格點多邊形的面積
多邊形1 8 1  
多邊形2 7 3  
一般格點多邊形 a b S
則S與a、b之間的關(guān)系為S=
a+2(b-1)
a+2(b-1)
(用含a、b的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

用水平線和豎起線將平面分成若干個邊長為1的小正方形格子,小正方形的頂點稱為格點,以格點為頂點的多邊形稱為格點多邊形.設(shè)格點多邊形的面積為S,該多邊形各邊上的格點個數(shù)和為a,內(nèi)部的格點個數(shù)為b,則S=數(shù)學公式a+b-1(史稱“皮克公式”).
小明認真研究了“皮克公式”,并受此啟發(fā)對正三角開形網(wǎng)格中的類似問題進行探究:正三角形網(wǎng)格中每個小正三角形面積為1,小正三角形的頂點為格點,以格點為頂點的多邊形稱為格點多邊形,下圖是該正三角形格點中的兩個多邊形:

根據(jù)圖中提供的信息填表:
格點多邊形各邊上的格點的個數(shù)格點邊多邊形內(nèi)部的格點個數(shù)格點多邊形的面積
多邊形181
多邊形273
一般格點多邊形abS
則S與a、b之間的關(guān)系為S=________(用含a、b的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

用水平線和豎起線將平面分成若干個邊長為1的小正方形格子,小正方形的頂點稱為格點,以格點為頂點的多邊形稱為格點多邊形.設(shè)格點多邊形的面積為S,該多邊形各邊上的格點個數(shù)和為a,內(nèi)部的格點個數(shù)為b,則S=a+b﹣1(史稱“皮克公式”).

小明認真研究了“皮克公式”,并受此啟發(fā)對正三角開形網(wǎng)格中的類似問題進行探究:正三角形網(wǎng)格中每個小正三角形面積為1,小正三角形的頂點為格點,以格點為頂點的多邊形稱為格點多邊形,下圖是該正三角形格點中的兩個多邊形:

根據(jù)圖中提供的信息填表:

格點多邊形各邊上的格點的個數(shù)

格點邊多邊形內(nèi)部的格點個數(shù)

格點多邊形的面積

多邊形1

8

1

多邊形2

7

3

一般格點多邊形

a

b

S

則S與a、b之間的關(guān)系為S= a+2(b﹣1) (用含a、b的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源:2013年江蘇省常州市中考數(shù)學試卷(解析版) 題型:解答題

用水平線和豎起線將平面分成若干個邊長為1的小正方形格子,小正方形的頂點稱為格點,以格點為頂點的多邊形稱為格點多邊形.設(shè)格點多邊形的面積為S,該多邊形各邊上的格點個數(shù)和為a,內(nèi)部的格點個數(shù)為b,則S=a+b-1(史稱“皮克公式”).
小明認真研究了“皮克公式”,并受此啟發(fā)對正三角開形網(wǎng)格中的類似問題進行探究:正三角形網(wǎng)格中每個小正三角形面積為1,小正三角形的頂點為格點,以格點為頂點的多邊形稱為格點多邊形,下圖是該正三角形格點中的兩個多邊形:

根據(jù)圖中提供的信息填表:
 格點多邊形各邊上的格點的個數(shù)格點邊多邊形內(nèi)部的格點個數(shù)格點多邊形的面積
多邊形181 
多邊形273 
一般格點多邊形abS
則S與a、b之間的關(guān)系為S=______(用含a、b的代數(shù)式表示).

查看答案和解析>>

同步練習冊答案