直角三角形兩銳角平分線相交所成的鈍角的度數(shù)是______.
如圖:∵AE、BD是直角三角形中兩銳角平分線,
∴∠OAB+∠OBA=90°÷2=45°,
兩角平分線組成的角有兩個:∠BOE與∠EOD這兩個交互補,
根據(jù)三角形外角和定理,∠BOE=∠OAB+∠OBA=45°,
∴∠EOD=180°-45°=135°,
故答案為:135°.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知等腰Rt△ABC的直角邊長為l,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰Rt△ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個等腰Rt△ADE,…,依此類推到第五個等腰Rt△AFG,則由這五個等腰直角三角形所構(gòu)成的圖形的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC交AC的延長線于M,連接CD,給出四個結(jié)論:
①∠ADC=45°;②BD=
1
2
AE;③AC+CE=AB;④AB-BC=2MC;其中正確的結(jié)論有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在△ABC中,CD⊥AB,垂足為D,∠A=30°,∠B=45°,AC=4.
求CD和AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在△ABC中,∠ABC=30°,AB邊長為10,AC邊的長度可以在3、5、7、11中取值,滿足這些條件的互不全等的三角形的個數(shù)是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AD交邊BC于點D,∠BAD=15°,∠ADC=4∠BAD,DC=2BD.
(1)求∠B的度數(shù);
(2)求證:∠CAD=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如果一個直角三角形斜邊上的中線與斜邊所成的銳角為50°,那么這個直角三角形的較小內(nèi)角的度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,BD是Rt△DAB和Rt△DCB的公共邊,∠A、∠C是直角,∠ADC=60°,BC=2cm,AD=5
3
cm,求DB、DC的長.(直角三角形中,30°角所對邊等于斜邊的一半)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,則CD=______.

查看答案和解析>>

同步練習(xí)冊答案