【題目】如圖,點(diǎn)C在線段AB上,點(diǎn)M、N分別是AC、BC的中點(diǎn).
若,求線段MN的長(zhǎng);
若C為線段AB上任一點(diǎn),滿足,其它條件不變,你能猜想MN的長(zhǎng)度嗎?并說明理由,你能用一句簡(jiǎn)潔的話描述你發(fā)現(xiàn)的結(jié)論嗎?
若C在線段AB的延長(zhǎng)線上,且滿足cm,M、N分別為AC、BC的中點(diǎn),你能猜想MN的長(zhǎng)度嗎?請(qǐng)畫出圖形,寫出你的結(jié)論,并說明理由.
【答案】(1)MN=7cm;(2)MN=a;結(jié)論:當(dāng)C為線段AB上一點(diǎn),且M,N分別是AC,BC的中點(diǎn),則有MN=AB;(3)MN=b.
【解析】
(1)由中點(diǎn)的定義可得MC、CN長(zhǎng),根據(jù)線段的和差關(guān)系即可得答案;(2)根據(jù)中點(diǎn)定義可得MC=AC,CN=BC,利用MN=MC+CN,,即可得結(jié)論,總結(jié)描述即可;(3)點(diǎn)在AB的延長(zhǎng)線上時(shí),根據(jù)M、N分別為AC、BC的中點(diǎn),即可求出MN的長(zhǎng)度.
(1)∵點(diǎn)M、N分別是AC、BC的中點(diǎn),AC=8,CB=6,
∴MC=AC=4,CN=BC=3,
∴MN=MC+CN=7cm.
(2)∵點(diǎn)M、N分別是AC、BC的中點(diǎn),
∴MC=AC,CN=BC,
∵AC+BC=AB=a,
∴MN=MC+CN=(AC+BC)=a.
綜上可得結(jié)論:當(dāng)C為線段AB上一點(diǎn),且M,N分別是AC,BC的中點(diǎn),則有MN=AB.
(3)如圖:當(dāng)點(diǎn)C在線段AB的延長(zhǎng)線時(shí),則AC>BC,
∵M是AC的中點(diǎn),
∴CM=AC,
∵點(diǎn)N是BC的中點(diǎn),
∴CN=BC,
∴MN=CM-CN=(AC-BC)=b.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AE交BC于點(diǎn)D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,求DC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(背景介紹)勾股定理是幾何學(xué)中的明珠,充滿著魅力.千百年來,人們對(duì)它的證明趨之若騖,其中有著名的數(shù)學(xué)家,也有業(yè)余數(shù)學(xué)愛好者.向常春在1994年構(gòu)造發(fā)現(xiàn)了一個(gè)新的證法.
(小試牛刀)把兩個(gè)全等的直角三角形如圖1放置,其三邊長(zhǎng)分別為a、b、c.顯然,∠DAB=∠B=90°,AC⊥DE.請(qǐng)用a、b、c分別表示出梯形ABCD、四邊形AECD、△EBC的面積,再探究這三個(gè)圖形面積之間的關(guān)系,可得到勾股定理:
S梯形ABCD= ,
S△EBC= ,
S四邊形AECD= ,
則它們滿足的關(guān)系式為 ,經(jīng)化簡(jiǎn),可得到勾股定理.
(知識(shí)運(yùn)用)(1)如圖2,鐵路上A、B兩點(diǎn)(看作直線上的兩點(diǎn))相距40千米,C、D為兩個(gè)村莊(看作兩個(gè)點(diǎn)),AD⊥AB,BC⊥AB,垂足分別為A、B,AD=25千米,BC=16千米,則兩個(gè)村莊的距離為 千米(直接填空);
(2)在(1)的背景下,若AB=40千米,AD=24千米,BC=16千米,要在AB上建造一個(gè)供應(yīng)站P,使得PC=PD,請(qǐng)用尺規(guī)作圖在圖2中作出P點(diǎn)的位置并求出AP的距離.
(知識(shí)遷移)借助上面的思考過程與幾何模型,求代數(shù)式最小值(0<x<16)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用火柴棒擺出一列正方形圖案,第①個(gè)圖案用了 4 根,第②個(gè)圖案用了 12 根,第③個(gè)圖案用了 24 根,按照這種方式擺下去,擺出第⑥個(gè)圖案用火柴棒的根數(shù)是( )
A. 84 B. 81 C. 78 D. 76
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用代數(shù)式表示:
(1)a,b兩數(shù)的平方和減去它們乘積的2倍;
(2)a,b兩數(shù)的和的平方減去它們的差的平方;
(3)一個(gè)兩位數(shù),個(gè)位上的數(shù)字為a,十位上的數(shù)字為b,請(qǐng)表示這個(gè)兩位數(shù);
(4)若a表示三位數(shù),現(xiàn)把2放在它的右邊,得到一個(gè)四位數(shù),請(qǐng)表示這個(gè)四位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,.說明的理由.
解:∵(已知),
∴________//________(_______________)
∴(_______________)
∵(________),
∴(_______________)
∵(己證),
∴(_______________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線l過正方形ABCD的頂點(diǎn)B,點(diǎn)A、C到直線l的距離分別是AE=1,CF=2,則EF長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā),沿折線ABCD方向以3cm/s的速度勻速運(yùn)動(dòng);點(diǎn)Q從點(diǎn)D出發(fā),沿線段DC方向以2cm/s的速度勻速運(yùn)動(dòng). 已知兩點(diǎn)同時(shí)出發(fā),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)求CD的長(zhǎng);
(2)當(dāng)四邊形PBQD為平行四邊形時(shí),求四邊形PBQD的周長(zhǎng);
(3)在點(diǎn)P、Q的運(yùn)動(dòng)過程中,是否存在某一時(shí)刻,使得△BPQ的面積為20cm2?若存在,請(qǐng)求出所有滿足條件的t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com