【題目】如圖,△ABC是等邊三角形,高AD、BE相交于點H,BC=,在BE上截取BG=2,以GE為邊作等邊三角形GEF,則△ABH與△GEF重疊(陰影)部分的面積為 .
【答案】.
【解析】
試題分析:如圖所示,由△ABC是等邊三角形,BC=,得到AD=BE=BC=6,∠ABG=∠HBD=30°,由直角三角的性質,得∠BHD=90°﹣∠HBD=60°,由對頂角相等,得∠MHE=∠BHD=60°,由BG=2,得EG=BE﹣BG=6﹣2=4.由GE為邊作等邊三角形GEF,得FG=EG=4,∠EGF=∠GEF=60°,△MHE是等邊三角形;S△ABC=ACBE=AC×EH×3EH=BE=×6=2.由三角形外角的性質,得∠BIF=∠FGE﹣∠IBG=60°﹣30°=30°,由∠IBG=∠BIG=30°,得IG=BG=2,由線段的和差,得IF=FG﹣IG=4﹣2=2,由對頂角相等,得∠FIN=∠BIG=30°,由∠FIN+∠F=90°,得∠FNI=90°,由銳角三角函數,得FN=1,IN=.S五邊形NIGHM=S△EFG﹣S△EMH﹣S△FIN==,故答案為:.
科目:初中數學 來源: 題型:
【題目】如圖,將等腰△ABC繞頂點B逆時針方向旋轉α度到△A1B1C1的位置,AB與A1C1相交于點D,AC與A1C1、BC1分別交于點E、F.
(1)求證:△BCF≌△BA1D;
(2)當∠C=α度時,判定四邊形A1BCE的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校開展社會實踐大課堂活動,七年級學生8點鐘從學校乘大客車去博物館參觀.小明同學由于在去學校的路上遇到了堵車情況,8:10才到學校,他的家長立刻開汽車從學校出發(fā),沿相同的路線送小明追趕大客車,結果8:30追上了大客車.已知小明家長的汽車的速度比大客車的速度每小時多29千米,求大客車的速度是每小時多少千米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合題
(1)如圖1,已知△ABC,點D,E,F分別是BC,AB,AC的中點,若△ABC的面積為16,則△ABD的面積是 , △EBD的面積是 .
(2)如圖2,點D,E,F分別是BC,AD,EC的中點,若△ABC的面積為16,求△BEF的面積是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一條防洪堤壩,其橫斷面是梯形,上底寬 米,下底寬 米,壩高 米.
(1)求防洪堤壩的橫斷面積;
(2)如果防洪堤壩長100米,那么這段防洪堤壩的體積是多少立方米?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com