如圖,AD∥BC,AC平分∠DAB,∠B=40°,則∠C=
70
70
°.
分析:根據平行線性質得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度數(shù)
解答:解:∵AD∥BC,
∴∠B+∠BAD=180°,
∵∠B=40°,
∴∠BAD=140°,
∵AC平分∠DAB,
∴∠DAC=
1
2
∠BAD=70°,
∵A∥BC,
∴∠C=∠DAC=70°,
故答案為:70.
點評:本題考查了平行線性質和角平分線定義,關鍵是求出∠DAC或∠BAC的度數(shù).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

2、如圖,AD∥BC,則下列式子成立的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

8、如圖:AD∥BC,AB=AC,∠BAC=80°,則∠DAC=
50
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、如圖,AD⊥BC,DE∥AB,則∠CDE與∠BAD的關系是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖,AD=BC,要得到△ABD≌△CDB,可以添加角的條件:∠
ADB
ADB
=∠
CBD
CBD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,AD⊥BC,EF⊥BC,∠1=∠2.求證:AB∥GF.

查看答案和解析>>

同步練習冊答案