【題目】五一假期,小麗到荷花湖風(fēng)景區(qū)游玩,她去時(shí)全程約84千米,返回時(shí)全程約45千米.小麗所乘汽車去時(shí)的平均速度是返回時(shí)的1.2倍,所用時(shí)間卻比返回時(shí)多20分鐘.求小麗所乘汽車返回時(shí)的平均速度.
【答案】小麗所乘汽車返回時(shí)的平均速度是75千米/時(shí)
【解析】
設(shè)小麗所乘汽車返回時(shí)的平均速度是x千米/時(shí),則去時(shí)的速度是1.2x千米/時(shí),根據(jù)題意可得等量關(guān)系:去時(shí)所用的時(shí)間-回來(lái)時(shí)所用的時(shí)間=20分鐘,根據(jù)等量關(guān)系可得方程再解方程即可.
設(shè)小麗所乘汽車返回時(shí)的平均速度是x千米/時(shí),則小麗所乘汽車去時(shí)的平均速度是1.2x千米/時(shí),
根據(jù)題意得:
解得:x=75,
經(jīng)檢驗(yàn),x=75是原分式方程的解.
答:小麗所乘汽車返回時(shí)的平均速度是75千米/時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),,.
(1)在所給坐標(biāo)系中作出關(guān)于y軸的對(duì)稱圖形;
(2)分別寫出點(diǎn),,的坐標(biāo);
(3)在軸上是否存在一點(diǎn),使的周長(zhǎng)最小,若存在,在所給坐標(biāo)系中作出點(diǎn)(不寫作法,保留作圖痕跡)并寫出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線AB與x軸交于點(diǎn)A(4,0)、與y軸交于點(diǎn)B(0,3),直線 BD與x軸交于點(diǎn)D,將直線AB沿直線BD翻折,點(diǎn)A恰好落在y軸上的C點(diǎn),則直線BD對(duì)應(yīng)的函數(shù)關(guān)系式為______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣4,3)、B(﹣3,1)、C(﹣1,3).
(1)請(qǐng)按下列要求畫圖:
①將△ABC先向右平移4個(gè)單位長(zhǎng)度、再向上平移2個(gè)單位長(zhǎng)度,得到△A1B1C1,畫出△A1B1C1;
②△A2B2C2與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱,畫出△A2B2C2.
(2)在(1)中所得的△A1B1C1和△A2B2C2關(guān)于點(diǎn)M成中心對(duì)稱,請(qǐng)直接寫出對(duì)稱中心M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖所示直線y=kx+2(k≠0)與反比例函數(shù)y=(m≠0)分別交于點(diǎn)P,與y軸、x軸分別交于點(diǎn)A和點(diǎn)B,且cos∠ABO=,過(guò)P點(diǎn)作x軸的垂線交于點(diǎn)C,連接AC,
(1)求一次函數(shù)的解析式.
(2)若AC是△PCB的中線,求反比例函數(shù)的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名運(yùn)動(dòng)員進(jìn)行長(zhǎng)跑訓(xùn)練,兩人距終點(diǎn)的路程y(米)與跑步時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答問(wèn)題:
(1)他們?cè)谶M(jìn)行 米的長(zhǎng)跑訓(xùn)練,在0<x<15的時(shí)段內(nèi),速度較快的人是 ;
(2)求甲距終點(diǎn)的路程y(米)和跑步時(shí)間x(分)之間的函數(shù)關(guān)系式;
(3)當(dāng)x=15時(shí),兩人相距多少米?在15<x<20的時(shí)段內(nèi),求兩人速度之差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=BD,點(diǎn)E、F分別是AB、AD上任意的點(diǎn)(不與端點(diǎn)重合),且AE=DF,連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H.給出如下幾個(gè)結(jié)論:
①∠ADE=∠DBF;②△DAE≌△BDG;③若AF=2DF,則BG=6GF;④CG與BD一定不垂直;⑤∠BGE=60°.其中正確的結(jié)論個(gè)數(shù)為( 。
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一種動(dòng)畫程序,在平面直角坐標(biāo)系屏幕上,直角三角形是黑色區(qū)域(含直角三角形邊界),其中A(1,1),B(2,1),C(1,3),用信號(hào)槍沿直線y=3x+b發(fā)射信號(hào),當(dāng)信號(hào)遇到黑色區(qū)域時(shí),區(qū)域便由黑變白,則能夠使黑色區(qū)域變白的b的取值范圍是( )
A.﹣5≤b≤0B.﹣5<b≤﹣3C.﹣5≤b≤3D.﹣5≤b≤5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ ABC中,AB = AC
(1)如圖 1,如果∠BAD = 30°,AD是BC上的高,AD =AE,則∠EDC =
(2)如圖 2,如果∠BAD = 40°,AD是BC上的高,AD = AE,則∠EDC =
(3)思考:通過(guò)以上兩題,你發(fā)現(xiàn)∠BAD與∠EDC之間有什么關(guān)系?請(qǐng)用式子表示:
(4)如圖 3,如果AD不是BC上的高,AD = AE,是否仍有上述關(guān)系?如有,請(qǐng)你寫出來(lái),并說(shuō)明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com